


Hyers–Ulam–Rassias Stability of Functional
Equations in Nonlinear Analysis

For further volumes:
http://www.springer.com/series/7393

http://www.springer.com/series/7393


Springer Optimization and Its Applications

VOLUME 48

Managing Editor
Panos M. Pardalos (University of Florida)

Editor–Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate dur-
ing the last few decades. New algorithmic and theoretical techniques have
been developed, the diffusion into other disciplines has proceeded at a rapid
pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics and other sciences.

The series Springer Optimization and Its Applications publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory works that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics cov-
ered include nonlinear optimization (convex and nonconvex), network flow
problems, stochastic optimization, optimal control, discrete optimization,
multi-objective programming, description of software packages, approxima-
tion techniques and heuristic approaches.



Soon-Mo Jung

Hyers–Ulam–Rassias
Stability of Functional
Equations in Nonlinear
Analysis

ABC



Soon-Mo Jung
Mathematics Section
College of Science and Technology
Hongik University
339-701 Jochiwon
Korea, Republic of (South Korea)
smjung@hongik.ac.kr

ISSN 1931-6828
ISBN 978-1-4419-9636-7 e-ISBN 978-1-4419-9637-4
DOI 10.1007/978-1-4419-9637-4
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011925568

Mathematics Subject Classification (2010): 39B82, 39B62, 39B72

c� Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

smjung@hongik.ac.kr
www.springer.com


To Themistocles M. Rassias
Creator of the Hyers–Ulam–Rassias Stability
of Functional Equations in Nonlinear
Analysis





Preface

An intriguing and famous talk presented by Stanislaw M. Ulam in 1940 triggered
the study of stability problems for various functional equations. In his talk, Ulam
discussed a number of important unsolved mathematical problems. Among them, a
question concerning the stability of homomorphisms seemed too abstract for anyone
to reach any conclusion. In the following year, Donald H. Hyers was able to give
a partial solution to Ulam’s question that was the first significant breakthrough and
step toward more solutions in this area. Since then, a large number of papers have
been published in connection with various generalizations of Ulam’s problem and
Hyers’s theorem. In particular, Themistocles M. Rassias succeeded in extending
the result of Hyers’s theorem by weakening the condition for the Cauchy differ-
ence. This remarkable result of Rassias led the concern of mathematicians toward
the study of stability problems of functional equations.

Unfortunately, no books dealing with a comprehensive illustration of the fast
developing field of nonlinear analysis had been published for the mathematicians
interested in this field for more than a half century until D. H. Hyers, G. Isac and
Th. M. Rassias published their book, Stability of Functional Equations in Several
Variables, Birkhäuser, 1998.

This very book will complement the books of Hyers, Isac and Rassias and
of Czerwik (Functional Equations and Inequalities in Several Variables, World
Scientific, 2002) by presenting mainly the results applying to the Hyers–Ulam–
Rassias stability. Many mathematicians have extensively investigated the subjects
on the Hyers–Ulam–Rassias stability. This book covers and offers almost all classi-
cal results on the Hyers–Ulam–Rassias stability in an integrated and self-contained
fashion.

� In Chapter 2, we discuss the Hyers–Ulam–Rassias stability problems and the
related topics of the additive Cauchy equation. In Section 2.1, we explain the
behaviors of additive functions. We, then, begin to discuss the Hyers–Ulam and
the Hyers–Ulam–Rassias stability problems of additive functional equation in
Sections 2.2 and 2.3. The stability on restricted domains and its applications are
introduced in Section 2.4. We explain briefly the method of invariant means and
the fixed point method in Sections 2.5 and 2.6. In Section 2.7, the composite
functional congruences are surveyed. The stability of the Pexider equation will
be proved in Section 2.8.
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viii Preface

� The Hyers–Ulam–Rassias stability of some generalized additive functional
equations is proved in Chapter 3. Moreover, we discuss the Hyers–Ulam stability
problem in connection with a question of Th. M. Rassias and J. Tabor.

� Chapter 4 deals with the Hosszú’s functional equation. In Section 4.1, we prove
that the Hosszú’s equation is stable in the sense of C. Borelli. The Hyers–Ulam
stability problem is discussed in Section 4.2. In Section 4.3, we present that the
generalized Hosszú’s equation is stable in the sense of Borelli. In the next section,
we prove that the Hosszú’s equation is not stable on the unit interval. Moreover,
the Hyers–Ulam stability of the Hosszú’s equation of Pexider type is proved in
Section 4.5.

� We survey the stability problems of the homogeneous functional equation in
Chapter 5. In Section 5.1, we prove the Hyers–Ulam–Rassias stability of the ho-
mogeneous functional equation between real Banach algebras. Section 5.2 deals
with the superstability on restricted domains. The stability problem of the equa-
tion between vector spaces will be discussed in Section 5.3. Moreover, we present
the Hyers–Ulam–Rassias stability of the homogeneous equation of Pexider type
in Section 5.4.

� There are a number of functional equations including all the linear functions
as their solutions. In Chapter 6, we introduce a few functional equations among
them. We survey the superstability property of the system of functional equations
f .x C y/ D f .x/C f .y/ and f .cx/ D cf .x/ in Section 6.1. Section 6.2 deals
with the stability problem for the functional equation f .xCcy/ D f .x/Ccf .y/.
In Section 6.3, we discuss stability problems of other systems which describe
linear functions.

� Jensen’s functional equation is the most important equation among a number of
variations of the additive Cauchy equation. The Hyers–Ulam–Rassias stability
problems of Jensen’s equation are proved in Section 7.1, and the Hyers–Ulam
stability on restricted domains is discussed in Section 7.2. In Section 7.3, we
prove the stability of Jensen’s equation by using the fixed point method. The
superstability and Ger type stability of the Lobačevskiĭ functional equation will
be surveyed in Section 7.4.

� Chapter 8 is dedicated to a survey on the stability problems for the quadratic func-
tional equations. We prove the Hyers–Ulam–Rassias stability of the quadratic
equation in Section 8.1. The stability problems on restricted domains are dis-
cussed in Section 8.2. Moreover, we prove the Hyers–Ulam–Rassias stability by
using the fixed point method in Section 8.3. Section 8.4 deals with the Hyers–
Ulam stability of another quadratic functional equation. We prove the stability of
the quadratic equation of Pexider type in Section 8.5.

� In Chapter 9, we discuss the stability problems for the exponential functional
equations. In Section 9.1, the superstability of the exponential Cauchy equa-
tion is proved. Section 9.2 deals with the stability of the exponential equation
in the sense of R. Ger. Stability problems on restricted domains are discussed in
Section 9.3. Another exponential functional equation f .xy/ D f .x/y is intro-
duced in Section 9.4.



Preface ix

� Chapter 10 deals with the stability problems for the multiplicative functional
equations. In Section 10.1, we discuss the superstability of the multiplica-
tive Cauchy equation and a functional equation connected with the Reynolds
operator. The results on ı-multiplicative functionals on complex Banach alge-
bras are presented in Section 10.2. We describe ı-multiplicative functionals in
connection with the AMNM algebras in Section 10.3. Another multiplicative
functional equation f .xy/ D f .x/y is discussed in Section 10.4. In Section 10.5,
we prove that a new multiplicative functional equation f .x C y/ D f .x/f .y/

f .1=x C 1=y/ is stable in the sense of Ger.
� In Chapter 11, we introduce a new functional equation f .xy/ D yf .x/ with the

logarithmic property. Moreover, the functional equation of Heuvers f .xC y/ D
f .x/C f .y/C f .1=x C 1=y/ will be discussed.

� The addition and subtraction rules for trigonometric functions can be repre-
sented by using functional equations. Some of these equations are introduced
and the stability problems are surveyed in Chapter 12. Sections 12.1 and 12.2
deal with the superstability phenomena of the cosine and the sine equations. In
Section 12.3, some trigonometric functional equations with two unknown func-
tions are discussed. In Section 12.4, we deal with the Hyers–Ulam stability of
the Butler-Rassias functional equation following M. Th. Rassias’s solution.

� Chapter 13 deals with the Hyers–Ulam–Rassias stability of isometries. The
historical background for Hyers–Ulam stability of isometries is introduced in
Section 13.1. The Hyers–Ulam–Rassias stability of isometries on restricted do-
mains is proved in Section 13.2. Section 13.3 is dedicated to the fixed point
method for studying the stability problem of isometries. In Section 13.4, we
discuss the Hyers–Ulam–Rassias stability of the Wigner equation on restricted
domains.

� Section 14.1 deals with the superstability of the associativity equation. In
Section 14.2, the Hyers–Ulam stability of a functional equation defining mul-
tiplicative derivations is proved for functions on .0; 1�. In Section 14.3, the
Hyers–Ulam–Rassias stability of the gamma functional equation and a gen-
eralized beta functional equation is proved. The Hyers–Ulam stability of the
Fibonacci functional equation will be proved in Section 14.4.

I would like to express my humble gratitude to Professor Themistocles M. Rassias
for his valuable suggestions and comments. I am also very much indebted to my
wife, Min-Soon Lee, as she has always stood by me and helped me type the
manuscript in LATEX system.

This research was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (No. 2010-0007143).

Finally, I would also like to acknowledge the fine cooperation and assistance that
Ms. Elizabeth Loew of Springer Publishing has provided in the publication of this
book.

December 2010 Soon-Mo Jung
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Chapter 1
Introduction

In the fall of 1940, S. M. Ulam gave a wide-ranging talk before a Mathematical
Colloquium at the University of Wisconsin in which he discussed a number of im-
portant unsolved problems. Among those was the following question concerning the
stability of homomorphisms (cf. [354]):

Let G1 be a group and let G2 be a metric group with a metric d.�; �/. Given
" > 0, does there exist a ı > 0 such that if a function h W G1 ! G2 satisfies the
inequality d.h.xy/; h.x/h.y// < ı for all x; y 2 G1; then there is a homomorphism
H W G1 ! G2 with d.h.x/;H.x// < " for all x 2 G1?

If the answer is affirmative, we say that the functional equation for homomor-
phisms is stable.

D. H. Hyers was the first mathematician to present the result concerning the
stability of functional equations. He brilliantly answered the question of Ulam for
the case where G1 and G2 are assumed to be Banach spaces (see [135]). This result
of Hyers is stated as follows (cf. Theorem 2.3):

Theorem 1.1 (Hyers). Let f W E1 ! E2 be a function between Banach spaces
such that

kf .x C y/ � f .x/ � f .y/k � ı (1.1)

for some ı > 0 and for all x; y 2 E1. Then the limit

A.x/ D lim
n!1 2�nf .2nx/ (1.2)

exists for each x 2 E1, and A W E1 ! E2 is the unique additive function such that

kf .x/ �A.x/k � ı

for every x 2 E1. Moreover, if f .tx/ is continuous in t for each fixed x 2 E1, then
the function A is linear.

Taking this famous result into consideration, the additive Cauchy equation
f .x C y/ D f .x/ C f .y/ is said to have the Hyers–Ulam stability on .E1; E2/
if for every function f W E1 ! E2 satisfying the inequality (1.1) for some ı � 0

and for all x; y 2 E1, there exists an additive function A W E1 ! E2 such that
f � A is bounded on E1.

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 1, c� Springer Science+Business Media, LLC 2011
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2 1 Introduction

The method in (1.2) provided by Hyers which produces the additive function A
will be called a direct method. This method is the most important and powerful tool
to study the stability of various functional equations.

Ten years after the publication of Hyers’s theorem, D. G. Bourgin extended the
theorem of Hyers and stated it in his paper [28] without proof. Unfortunately, it
seems that this result of Bourgin failed to receive attention from mathematicians at
that time. No one has made use of this result for a long time.

In 1978, Th. M. Rassias addressed the Hyers’s stability theorem and attempted
to weaken the condition for the bound of the norm of Cauchy difference

f .x C y/ � f .x/ � f .y/

and proved a considerably generalized result of Hyers by making use of a direct
method (cf. Theorem 2.5):

Theorem 1.2 (Rassias). Let f W E1 ! E2 be a function between Banach spaces.
If f satisfies the functional inequality

kf .x C y/� f .x/ � f .y/k � �
�kxkp C kykp�

for some � � 0, p with 0 � p < 1 and for all x; y 2 E1, then there exists a unique
additive function A W E1 ! E2 such that

kf .x/ �A.x/k � 2�

2 � 2p kxkp (1.3)

for each x 2 E1. If, in addition, f .tx/ is continuous in t for each fixed x 2 E1,
then the function A is linear.

This exciting result of Rassias attracted a number of mathematicians who began
to be stimulated to investigate the stability problems of functional equations.

By regarding a large influence of S. M. Ulam, D. H. Hyers, and Th. M. Rassias
on the study of stability problems of functional equations, the stability phenomenon
proved by Th. M. Rassias is called the Hyers–Ulam–Rassias stability. In this book,
the Hyers–Ulam stability will be regarded as a special case of the Hyers–Ulam–
Rassias stability.

For the last thirty years many results concerning the Hyers–Ulam–Rassias stabil-
ity of various functional equations have been obtained, and a number of definitions
of stability have been introduced. Hence, it is necessary to introduce the exact def-
inition of the Hyers–Ulam–Rassias stability which is applicable to all functional
equations appearing in this book.

Let E1 and E2 be some appropriate spaces. For some p; q 2 N and for any
i 2 f1; : : : ; pg let

gi W Eq1 ! E1 and G W Ep2 �Eq1 ! E2
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be functions. Assume that ', ˆ W Eq1 ! Œ0;1/ are functions satisfying some given
conditions. If for every function f W E1 ! E2 satisfying the inequality

�
�G
�
f .g1.x1; : : : ; xq//; : : : ; f .gp.x1; : : : ; xq//; x1; : : : ; xq

���

� '.x1; : : : ; xq/ (1.4)

for all x1; : : : ; xq 2 E1 there exists a functionH W E1 ! E2 such that

G
�
H.g1.x1; : : : ; xq//; : : : ;H.gp.x1; : : : ; xq//; x1; : : : ; xq

� D 0

for all x1; : : : ; xq 2 E1 and

kf .x/ �H.x/k � ˆ.x; : : : ; x/ (1.5)

for any x 2 E1, then we say that the functional equation

G
�
f .g1.x1; : : : ; xq//; : : : ; f .gp.x1; : : : ; xq//; x1; : : : ; xq

� D 0 (1.6)

has Hyers–Ulam–Rassias stability on .E1; E2/ or we say that it is stable in the sense
of Hyers, Ulam, and Rassias.

If '.x1; : : : ; xq/ in (1.4) and ˆ.x; : : : ; x/ in (1.5) are replaced by ı and Kı
.K > 0/, respectively, then we say that the corresponding phenomenon of the func-
tional equation (1.6) is the Hyers–Ulam stability on .E1; E2/.

If each solution f W E1 ! E2 of the inequality (1.4) is either a solution of
the equation (1.6) or satisfies some strong regular conditions, then we say that the
equation (1.6) is superstable on .E1; E2/. J. Baker, J. Lawrence, and F. Zorzitto
discovered the superstability phenomenon for the first time. Indeed, they assumed
that V is a vector space over rational numbers Q and proved that if a function
f W V ! R satisfies jf .x C y/ � f .x/f .y/j � ı for a given ı > 0 and for all
x; y 2 V , then either f .x/ remains bounded or f is an exponential function (ref.
[17]). If there is no confusion, we can omit .E1; E2/ in the terminologies.

R. Ger pointed out that the superstability phenomenon of the exponential equa-
tion is caused by the fact that the natural group structure in the range space is
disregarded, and he suggested a new type of stability for the exponential equation
(ref. [122]):

ˇ
ˇ
ˇ̌ f .x C y/

f .x/f .y/
� 1

ˇ
ˇ
ˇ̌ � ı: (1.7)

If for each function f W .G;C/ ! E nf0g satisfying the inequality (1.7) for some
ı > 0 and for all x; y 2 G, there exists an exponential function M W G ! Enf0g
such that

kf .x/=M.x/ � 1k � ˆ.ı/ and kM.x/=f .x/ � 1k � ‰.ı/
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for all x 2 G, where ˆ.ı/ and ‰.ı/ depend on ı only, then the exponential
functional equation is said to be stable in the sense of Ger.

We will use the following notations. C, N , Q, R, and Z denote the set of complex
numbers, of positive integers, of rational numbers, of real numbers, and of integers,
respectively. Furthermore, let N0 D N [ f0g.

Now, let us review the contents of this book briefly.
In Chapter 2, we discuss the most famous functional equation, namely, the addi-

tive Cauchy functional equation

f .x C y/ D f .x/C f .y/

of which properties have been widely applied to almost every field of science and
engineering.

In Section 2.1, the behaviors of the continuous or discontinuous additive func-
tions will be briefly described.

In Section 2.2, the very historically important theorem of Hyers will again be
presented.

Section 2.3 will entirely be devoted to the Hyers–Ulam–Rassias stability of the
additive functional equation for functions between Banach spaces. The theorem of
Rassias (see above or [285]) which is also very important from a historical point
of view will be described in Theorem 2.5. Furthermore, a counterexample of Z.
Gajda [112], stating that the theorem of Rassias is no more valid if p D 1, will be
introduced in Theorem 2.6.

In relation to Rassias’s theorem, Th. M. Rassias asked in his paper [290] whether
the inequality (1.3) provides the best possible estimate of the difference kf .x/ �
A.x/k between an “approximately additive function” f and the additive function
A constructed by making use of a direct method. This question was affirmatively
answered by Th. M. Rassias and J. Tabor in the case of p D 1=2 (ref. [313]). In the
case of p > 0 (p ¤ 1), the answer is also affirmative as was demonstrated by J.
Brzdȩk (ref. [30]). The result of Brzdȩk will be formulated in Theorem 2.10.

In the next part of Section 2.3, more generalized results on the Hyers–Ulam–
Rassias stability of the additive Cauchy equation will further be introduced (see,
e.g., [113,118,119,142–144,156,280–282,302,311]). These results will be applied
to the study of some important problems in nonlinear analysis; for example, the
existence of fixed points on cones for nonlinear functions, the study of eigenvalues
for a couple of nonlinear operators, and the study of bifurcations to the infinity, with
respect to a convex cone, of solutions of the Hammerstein equation (see [144]).

In Section 2.4, the Hyers–Ulam stability of the additive Cauchy equation on a
restricted domain will be proved. F. Skof was the first person to address the stability
on a bounded domain. Indeed, Skof obtained the following result for N D 1, and
Z. Kominek extended it for any N 2 N (cf. [224, 330] or Lemma 2.28):

Let E be a Banach space. Given c > 0, let a function f W Œ0; c/N ! E satisfy
the functional inequality

kf .x C y/ � f .x/ � f .y/k � ı
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for all x; y 2 Œ0; c/N with x C y 2 Œ0; c/N . Then there exists an additive function
A W RN ! E such that

kf .x/ �A.x/k � .4N � 1/ı
for x 2 Œ0; c/N .

A theorem of L. Losonczi [238] concerning the stability on a restricted domain
will also be introduced in Theorem 2.31. This result will be reserved for further use
in the study of the Hyers–Ulam stability of Hosszú’s equation (see Theorem 4.5).

In contrast to the previous one, F. Skof [331] also proved the Hyers–Ulam sta-
bility of the additive Cauchy equation on an unbounded and restricted domain. She
applied this result to the study of an interesting asymptotic behavior of additive
functions (Theorems 2.32 and 2.34 and Corollary 2.35):

The function f W R ! R is additive if and only if f .xCy/� f .x/� f .y/ ! 0

as jxj C jyj ! 1.

The stability result of the additive Cauchy equation on a restricted domain pre-
sented by D. H. Hyers, G. Isac, and Th. M. Rassias will be discussed in Theorem
2.36, and its applications to p-asymptotical derivatives will also be presented
(ref. [136]).

Section 2.5 will address the method of invariant means. Until now, it has been
assumed that the domains of functions involved are vector spaces. In this section, the
theorem of Hyers will be generalized by extending the domain spaces of involved
functions to abelian semigroups. The results of G. L. Forti and Z. Gajda will be
described (cf. [105, 111, 316, 342, 343]).

Recently, L. Cădariu and V. Radu proved the Hyers–Ulam–Rassias stability of
the additive Cauchy equation by using the fixed point method (see [57,279]). Many
mathematicians try to prove the Hyers–Ulam–Rassias stability of various functional
equations by applying the fixed point method. This method appears to be powerful
and successful. In Section 2.6, a theorem of Cădariu and Radu will be introduced.

In Section 2.7, a theorem of R. Ger and P. Šemrl concerning the composite func-
tional congruence will be demonstrated (Corollary 2.48 or [123]):

Let .G;C/ be a cancellative abelian semigroup, and let " 2 .0; 1=4/. If a function
f W G ! R satisfies the congruence

f .x C y/ � f .x/ � f .y/ 2 Z C .�"; "/
for all x; y 2 G, then there exists a function p W G ! R such that

p.x C y/ � p.x/ � p.y/ 2 Z and jf .x/ � p.x/j � "

for any x; y 2 G.

This result will be applied to the proof of stability of the exponential functional
equation in the sense of Ger (see Theorem 9.7).

The Hyers–Ulam–Rassias stability of the Pexider equation, f .x C y/ D g.x/C
h.y/, will be surveyed in the last section of Chapter 2. A theorem proved by
K.-W. Jun, D.-S. Shin, and B.-D. Kim is introduced (see Theorem 2.49 or [155]):
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Let G and E be an abelian group and a Banach space, respectively. Let ' W
G2 ! Œ0;1/ be a function satisfying

ˆ.x/ D
1X

iD1
2�i�'

�
2i�1x; 0

�C '
�
0; 2i�1x

�C '
�
2i�1x; 2i�1x

��
< 1

and
lim
n!1 2�n'.2nx; 2ny/ D 0

for all x; y 2 G. If functions f; g; h W G ! E satisfy the inequality

kf .x C y/� g.x/ � h.y/k � '.x; y/

for all x; y 2 G, then there exists a unique additive function A W G ! E such that

kf .x/ �A.x/k � kg.0/k C kh.0/k Cˆ.x/;

kg.x/ �A.x/k � kg.0/k C 2kh.0/k C '.x; 0/Cˆ.x/;

kh.x/ �A.x/k � 2kg.0/k C kh.0/k C '.0; x/Cˆ.x/

for all x 2 G.

In Chapter 3, the Hyers–Ulam–Rassias stability of some generalized additive
Cauchy equations will be discussed. In the paper [312], Th. M. Rassias and J. Tabor
asked whether the functional equation

f .ax C by C c/ D Af .x/C Bf .y/C C

with abAB ¤ 0 is stable in the sense of Hyers, Ulam, and Rassias.
Section 3.1 will deal with the results of C. Badea [8] concerning the Hyers–

Ulam–Rassias stability of the functional equation

f .ax C by/ D af .x/C bf .y/:

These results of Badea provide a partial answer to the question of Rassias and Tabor.
In Section 3.2, in the paper [162] S.-M. Jung introduced another generalized

additive Cauchy equation

f

0

@x0 C
mX

jD1
aj xj

1

A D
mX

iD1
bif

0

@
mX

jD1
aijxj

1

A : (1.8)

In the case of x0 D 0 in (1.8), the Hyers–Ulam–Rassias stability of (1.8) will be
proved in Theorem 3.6. This result will be applied to a partial answer to the question
of Rassias and Tabor.
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In Section 3.3, the Hyers–Ulam stability phenomenon of a new functional
equation

f .x C y/2 D �
f .x/C f .y/

�2

introduced by S.-M. Jung [157] will be presented.
In Chapter 4, a special form of generalized additive Cauchy equations, the pre-

sumed Hosszú’s functional equation

f .x C y � xy/ D f .x/C f .y/ � f .xy/;

will be discussed.
C. Borelli was the first person to deal with the stability problem of this equation.

He proved in his paper [23] that the Hosszú’s equation is stable in the sense of
Hyers, Ulam, and Borelli (cf. Theorem 4.4). The result of Borelli will be introduced
in Section 4.1.

The result of Borelli was a predecessor to the proof of the Hyers–Ulam stability
of the Hosszú’s equation. In fact, L. Losonczi proved the Hyers–Ulam stability of
the Hosszú’s functional equation (Theorem 4.5 or [238]):

Let E be a Banach space and suppose that a function f W R ! E satisfies the
inequality

jf .x C y � xy/ � f .x/ � f .y/C f .xy/j � ı

for some ı � 0 and for all x; y 2 R. Then there exists a unique additive function
A W R ! E and a unique constant b 2 E such that

kf .x/ � A.x/ � bk � 20ı

for any x 2 R.

In Section 4.3, a generalized form of the Hosszú’s functional equation

f .x C y C qxy/ D f .x/C f .y/C qf .xy/;

where q is a fixed rational number, will be discussed. In Theorem 4.10, the Hyers–
Ulam–Borelli stability of the functional equation mentioned above will be proved
under the assumption that q 62 f�1=2; 0; 1=2g (cf. [191]).

We will see that the Hosszú’s equation is not stable on the unit interval.
J. Tabor proved this surprising theorem in the paper [348] and will be addressed
in Section 4.4.

In Section 4.5, we will survey the Hyers–Ulam stability of the Hosszú’s func-
tional equation of Pexider type.

In Chapter 5, the Hyers–Ulam–Rassias stability of the homogeneous functional
equation

f .yx/ D ykf .x/

of degree k will be proved.
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Section 5.1 will be devoted to the Hyers–Ulam–Rassias stability property of
the homogeneous equation for the functions between Banach algebras. Notably,
J. Tabor and J. Tabor proved that the homogeneous equation for the functions
between Banach algebras is superstable if some weak conditions are satisfied
(Theorem 5.3 or [161]).

In Section 5.2, a few results of S.-M. Jung [166] will be introduced, i.e., the
superstability property of the homogeneous equation will be applied to the study of
the superstability phenomenon of the same equation on a restricted domain, and this
result for a restricted domain will be applied to the proof of an asymptotic behavior
of the homogeneous functions.

In Section 5.3, the stability results of the homogeneous equation for the func-
tions between vector spaces will be presented. The superstability results of J. Tabor
[347] will be formulated in Theorem 5.9. It is interesting to observe that the bound
condition for the norm of the difference f .cx/ � cf .x/ determines the type of sta-
bility as we may see in Theorems 5.9 and 5.11. Indeed, S. Czerwik [88] proved the
Hyers–Ulam–Rassias stability of the homogeneous equation (Theorem 5.11), while
J. Tabor [347] observed the superstability phenomenon for the same equation under
different conditions from those of Czerwik.

In the last section of Chapter 5, the Hyers–Ulam–Rassias stability of the homo-
geneous functional equation of Pexider type

f .˛x/ D  .˛/g.x/

will be discussed, where f and g are unknown functions and  is a given function
(Theorem 5.15 or [91]).

There are a number of (systems of) functional equations which include all the
linear functions as their solutions.

In Chapter 6, only a few (systems of) functional equations among them will be
introduced. In Section 6.1, the superstability property of the “intuitive” system

�
f .x C y/ D f .x/C f .y/;

f .cx/ D cf .x/
(1.9)

obtained by J. Tabor will be presented (ref. [347]).
J. Schwaiger introduced the functional equation

f .x C cy/ D f .x/C cf .y/

which is equivalent to the system (1.9) if the related domain and range are vector
spaces (ref. [325]). He proved the stability of the given equation, and these related
results will be found in Section 6.2.

As indicated above, Rassias’s theorem cannot be extended for p D 1 (cf.
Theorem 2.6). Such a counterexample has stimulated many mathematicians in an
attempt to surpass such awkwardness. For example, B. E. Johnson worked for this
purpose. In Section 6.3, a theorem of Johnson will be formulated in Theorem 6.7
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(ref. [147]). P. Šemrl simplified the functional inequalities appearing in the theorem
of Johnson and proved the stability result (cf. Theorem 6.9 or [326]):

Let a continuous function f W R ! R satisfy the functional inequalities

jf .x1 C � � � C xn/� f .x1/� � � � � f .xn/j � ı
�jx1j C � � � C jxnj�

for some ı > 0 and for all n 2 N , x1; : : : ; xn 2 R. Then there exists a linear
function L W R ! R such that

jf .x/ �L.x/j � ıjxj
for all x 2 R.

The simplest and most elegant variation of the additive Cauchy equation is the
Jensen’s functional equation

2f
�x C y

2

�
D f .x/C f .y/

whose Hyers–Ulam–Rassias stability properties will be proved in Chapter 7.
In Section 7.1, the Hyers–Ulam–Rassias stability result of S.-M. Jung will be

presented (see Theorem 7.1 or [163]):

Let E1 and E2 be a real normed space and a real Banach space, respectively.
Assume that ı; � � 0 are fixed, and let p > 0 be given with p ¤ 1. Suppose a
function f W E1 ! E2 satisfies the functional inequality

�
��2f

�x C y

2

�
� f .x/ � f .y/

�
�� � ı C �

�kxkp C kykp� (1.10)

for all x; y 2 E1. Furthermore, assume f .0/ D 0 and ı D 0 in (1.10) for the case
of p > 1. Then there exists a unique additive function A W E1 ! E2 such that

kf .x/ � A.x/k �
(
ı C kf .0/k C .21�p � 1/�1�kxkp .for 0 < p < 1/;

2p�1.2p�1 � 1/�1�kxkp .for p > 1/

for all x 2 E1.

Similarly, as in the case of the additive Cauchy equation, the Jensen’s functional
equation is not stable if p D 1 and ı D 0 are assumed in the inequality (1.10). Jung
proved that an example which was constructed by Th. M. Rassias and P. Šemrl [310]
as a counterexample for the case of p D 1 in the theorem of Rassias also serves as
a counterexample for the Jensen’s equation (see Theorem 7.3 or [163]).

In Section 7.2, the stability result of Z. Kominek for a bounded domain will
be introduced in Theorem 7.5 (ref. [224]). Another stability result of the Jensen’s
equation on an unbounded and restricted domain was obtained by S.-M. Jung, which
will be formulated in Theorem 7.7. By using this result, Jung was able to prove an
asymptotic property of the additive functions which may be regarded as a modifica-
tion of Skof’s result mentioned above (see Corollary 7.8 or [163]).
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A new method for proving the stability will be introduced in Section 7.3. By
applying the fixed point method (Theorem 2.43), L. Cădariu and V. Radu [55]
proved the Hyers–Ulam–Rassias stability of the Jensen’s functional equation (see
Theorem 7.9):

LetE1 be a .real or complex/ vector space and letE2 be a Banach space. Assume
that a function f W E1 ! E2 satisfies f .0/ D 0 and the inequality

��
�2f

�x C y

2

�
� f .x/ � f .y/

��
� � '.x; y/

for all x; y 2 E1, where ' W E21 ! Œ0;1/ is a given function. Moreover, assume
that there exists a constant 0 < L < 1 such that

'.x; 0/ � Lqi'
�
q�1
i x; 0

�

for any x 2 E1, where q0 D 2 and q1 D 1=2. If ' satisfies the condition

lim
n!1 q�n

i '.qni x; q
n
i y/ D 0

for all x; y 2 E1, then there exists a unique additive function A W E1 ! E2 such
that

kf .x/ �A.x/k � L1�i

1 �L'.x; 0/
for any x 2 E1.

A theorem of P. Găvruta will be introduced in Section 7.4 which concerns the
superstability of Lobačevskiĭ’s functional equation

f
�x C y

2

�2 D f .x/f .y/

(see Theorem 7.10 or [114]). Moreover, the Ger type stability of the Lobačevskiĭ’s
equation is also introduced (see [170]).

In Chapter 8, the Hyers–Ulam–Rassias stability of the quadratic functional equa-
tions will be discussed. The “original” quadratic functional equation

f .x C y/C f .x � y/ D 2f .x/C 2f .y/

will be presented in Section 8.1.
F. Skof was the first person who proved the Hyers–Ulam stability of the quadratic

equation for the functions f W E1 ! E2, where E1 is a normed space and E2 is a
Banach space (ref. [331]). P. W. Cholewa demonstrated that the theorem of Skof is
also valid ifE1 is replaced by an abelian group (ref. [70]). S. Czerwik finally proved
the Hyers–Ulam–Rassias stability of the quadratic equation (see Theorems 8.3 and
8.4 or [87]).
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Similarly, as in the cases of the additive Cauchy equation and the Jensen’s
equation, Czerwik presented a counterexample concerning the special case when
p D 2 is assumed in Theorem 8.3 or 8.4.

In Section 8.2, the important results concerning the Hyers–Ulam stability of the
quadratic functional equation on restricted domains will be introduced.

The Hyers–Ulam–Rassias stability of the quadratic functional equation will be
again proved in Section 8.3 by using the fixed point method. In Theorems 8.12 and
8.14, some results of S.-M. Jung, T.-S. Kim, and K.-S. Lee will be presented.

Section 8.4 is devoted to a quadratic functional equation different from the
“original” quadratic functional equation:

f .x C y C z/C f .x/C f .y/C f .z/ D f .x C y/C f .y C z/C f .z C x/:

In Theorems 8.16 and 8.17, the Hyers–Ulam stability of the above equation will be
proved under some suitable conditions.

The stability problem of the quadratic functional equation of Pexider type is
treated in Section 8.5. In Theorem 8.18 and Corollary 8.19, we will introduce some
results presented by S.-M. Jung (see [173]).

Chapter 9 will discuss the stability problems of the exponential functional equa-
tions. The exponent law of the exponential functions is intuitively symbolized by
the exponential functional equation

f .x C y/ D f .x/f .y/:

This equation reveals a different stability behavior from those of other functional
equations. Indeed, J. Baker, J. Lawrence, and F. Zorzitto proved the superstability
of the exponential equation (ref. [17]):

If a real-valued function defined on a real vector space satisfies the functional
inequality

jf .x C y/� f .x/f .y/j � ı

for some ı > 0 and for all x and y, then f is either bounded or an exponential
function.

This theorem was the first result concerning the superstability phenomenon of
functional equations. Later, J. Baker, L. Székelyhidi, and S.-M. Jung generalized
this result (ref. [16, 164, 341]). These results will be described in Section 9.1.

Section 9.2 will address the subject on the stability in the sense of Ger. As men-
tioned above, R. Ger first demonstrated that the superstability phenomenon of the
exponential equation is caused by the fact that the natural group structure in the
range space is disregarded and he suggested the stability problem in the form (1.7)
(ref. [122]).

R. Ger and P. Šemrl proved the stability (in the sense of Ger) of the exponential
equation (cf. Theorem 9.7 or [123]):

Let .G;C/ be a cancellative abelian semigroup, and let ı 2 Œ0; 1/ be given. If a
function f W G ! Cnf0g satisfies the inequality (1.7) for all x; y 2 G, then there
exists a unique exponential functionM W G ! Cnf0g such that
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max
˚jf .x/=M.x/ � 1j; jM.x/=f .x/ � 1j�

� �
1C .1 � ı/�2 � 2..1C ı/=.1� ı//1=2

�1=2

for any x 2 G.

Section 9.3 will deal with the stability problems of the exponential equation on a
restricted domain. S.-M. Jung presented the superstability phenomenon of the expo-
nential equation for functions on an unbounded and restricted domain under a weak
condition and applied this result to the proof of an asymptotic property of the ex-
ponential functions (see Theorem 9.8, Corollary 9.9 or [180]). Furthermore, he also
proved a theorem which may be regarded as a version of the theorem of Ger for a
restricted domain (Theorem 9.10).

In Section 9.4, we will introduce a new type of functional equation

f .xy/ D f .x/y

with the exponential property because every exponential function f .x/D ax .a >0I
x 2 C/ satisfies this equation. The results of Jung [165] on the stability in the sense
of Ger of this equation will be presented.

In Chapter 10, stability problems of the multiplicative functional equations
will be discussed. First, we will consider the “original” multiplicative functional
equation

f .xy/ D f .x/f .y/:

Let E be a commutative complex Banach algebra. A linear functional � on E is
called ı-multiplicative if

j�.xy/� �.x/�.y/j � ıkxkkyk

for all x; y 2 E . Each nonzero continuous linear functional on E is called a char-
acter of E if it is multiplicative. Let us denote by OE the set of characters of E . For
every continuous linear functional �, let us define

d.�/ D inf
˚k� �  k j  2 OE [ f0g�:

We state that E is an algebra in which approximately multiplicative functionals are
near multiplicative functionals, or E is AMNM for short, if for any " > 0 there
exists ı > 0 such that d.�/ < " whenever � is a ı-multiplicative linear functional.

A theory of AMNM algebras contributed by B. E. Johnson [146] will be demon-
strated in Section 10.3.

A new type of multiplicative functional equation, namely, f .xy/ D f .x/y , will
be discussed in Section 10.4. In the paper [171] (cf. [300]) S.-M. Jung dealt with
the stability problems of this equation in the sense of Ger, and these results will be
presented.
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In the last section of Chapter 10, a new multiplicative functional equation,

f .x C y/ D f .x/f .y/f
�
x�1 C y�1�;

will be discussed. In particular, S.-M. Jung [175] proved that this functional equation
is stable in the sense of Ger (see Theorem 10.23).

It is not difficult to demonstrate the Hyers–Ulam stability of the logarithmic func-
tional equation f .xy/ D f .x/Cf .y/ for the functions from .0;1/ into a Banach
space E . More precisely, if a function f W .0;1/ ! E satisfies the inequality
kf .xy/ � f .x/ � f .y/k � ı for some ı > 0 and for all x; y > 0, then there exists
a unique logarithmic function L W .0;1/ ! E such that kf .x/ � L.x/k � ı for
any x > 0. Therefore, we will introduce, in Chapter 11, a new functional equation

f .xy/ D yf .x/:

The above functional equation may be regarded as another logarithmic functional
equation because each logarithmic function f .x/ D logx .x > 0/ is a solution
of this equation. S.-M. Jung obtained the superstability results of this equation in
various settings in his paper [158], which will be presented in Theorems 11.2, 11.3,
and 11.8.

Moreover, the functional equation of Heuvers, f .x C y/ D f .x/ C f .y/ C
f
�
x�1 C y�1�, will be introduced. The Hyers–Ulam stability of the equation of

Heuvers will be proved in Theorem 11.10.
The famous addition or subtraction rules for trigonometric functions may be rep-

resented by using functional equations. Some of such equations will be introduced
and stability problems for them will be surveyed in Chapter 12.

In Section 12.1, we will discuss the superstability phenomenon of the cosine
functional equation

f .x C y/C f .x � y/ D 2f .x/f .y/ (1.11)

which stands for an addition theorem of cosine function. This equation is sometimes
called the d’Alembert equation.

J. Baker proved the superstability for this equation for the first time, and later
P. Găvruta presented a short proof for the theorem (Theorem 12.2, [16] or [114]):

Let ı > 0 be given and let .G;C/ be an abelian group. If a function f W G ! C
satisfies the functional inequality

jf .x C y/C f .x � y/ � 2f .x/f .y/j � ı

for all x; y 2 G, then either jf .x/j � �
1 C p

1C 2ı
�
=2 for any x 2 G or f

satisfies the cosine functional equation (1.11) for all x; y 2 G.

Similarly, the superstability of the sine functional equation

f .x C y/f .x � y/ D f .x/2 � f .y/2 (1.12)
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will be presented in Section 12.2. This equation may remind us of one of the
trigonometric formulas:

sin.x C y/ sin.x � y/ D sin2 x � sin2 y:

P. W. Cholewa obtained the superstability phenomenon of the sine functional
equation (1.12) (ref. Theorem 12.7 or [69]):

Let .G;C/ be an abelian group in which division by 2 is uniquely performable.
If an unbounded function f W G ! C satisfies the inequality

ˇ
ˇf .x C y/f .x � y/ � f .x/2 C f .y/2

ˇ
ˇ � ı

for some ı > 0 and for all x; y 2 G, then f is a solution of the sine functional
equation (1.12).

L. Székelyhidi introduced the following functional equations

f .xy/ D f .x/f .y/ � g.x/g.y/ (1.13)

and

f .xy/ D f .x/g.y/C f .y/g.x/ (1.14)

for complex-valued functions defined on a semigroup .G; �/ (ref. [345]). It is not
difficult to demonstrate that the equations (1.13) and (1.14) represent addition theo-
rems for cosine and sine.

In Section 12.3, the stability results of L. Székelyhidi in connection with the
trigonometric functional equations (1.13) and (1.14) will be surveyed (Theorems
12.10, 12.13 or [345]). It is very interesting that these functional equations for
complex-valued functions defined on an amenable group are not superstable, but
they are stable in the sense of Hyers and Ulam, whereas the equations (1.11) and
(1.12) are superstable.

In Section 12.4, we will deal with the Butler–Rassias functional equation

f .x C y/ D f .x/f .y/C c sin x sin y:

M. Th. Rassias solved the equation in the class of real functions (Theorem 12.14):

Let c < �1 be a constant. The solution f W R ! R of the Butler–Rassias
functional equation is f .x/ D a sinx C cosx or f .x/ D �a sin x C cosx, where
a D pjcj � 1.

S.-M. Jung proved the Hyers–Ulam stability of the Butler–Rassias functional
equation (see Theorem 12.17).

It is worthwhile to note that R. Ger considered the functional equations (1.13)
and (1.14) simultaneously and proved that the system is not superstable, but that it
is stable in the sense of Hyers, Ulam, and Rassias (ref. Theorem 12.18 or [121]).
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An isometry is a distance-preserving map between metric spaces. For normed
spaces E1 and E2, a function f W E1 ! E2 is called a ı-isometry if f changes
distances at most ı, i.e.,

ˇ
ˇkf .x/ � f .y/k � kx � ykˇˇ � ı

for all x; y 2 E1.
In Section 13.1, we will introduce the Hyers–Ulam stability results of the isome-

tries. By making use of a direct method, D. H. Hyers and S. M. Ulam proved that
the surjective isometries of a complete Euclidean space are stable in the sense of
Hyers and Ulam. (Theorem 13.4 or [139]).

Let E be a complete abstract Euclidean space. Assume that f W E ! E is a
surjective ı-isometry and f .0/ D 0. Then there exists a surjective isometry I W
E ! E such that

kf .x/ � I.x/k � 10ı

for all x 2 E .

D. G. Bourgin [25], R. D. Bourgin [27], P. M. Gruber [128], and J. Gevirtz [124]
continued the study of stability problems for isometries. We close Section 13.1 by
introducing a theorem of M. Omladič and P. Šemrl in which they presented a sharp
stability result for ı-isometries (see Theorem 13.8 or [259]):

LetE1 andE2 be real Banach spaces. If f W E1 ! E2 is a surjective ı-isometry
and f .0/ D 0, then there exists a unique surjective linear isometry I W E1 ! E2
such that

kf .x/ � I.x/k � 2ı

for each x 2 E1.

The Hyers–Ulam–Rassias stability of isometries on a restricted domain will be
surveyed in Section 13.2. Let us define

K0.ı/ D K1.ı/ D ı; K2.ı/ D 3
p
3ı ; Ki .ı/ D 27ı2

1�i

inductively for all integers i � 3 and for some ı > 0. First, we introduce a theo-
rem of J. W. Fickett (see Theorem 13.10 or [103]). Fickett constructed the related
isometry by quite a different method from the (direct) method of Hyers and Ulam:

Let S be a bounded subset of Rn and let f W S ! Rn be a ı-isometry, where
0 � Kn.ı=diamS/ � 1=3. Then there exists an isometry I W S ! Rn such that

kf .s/ � I.s/k � KnC1.ı=diamS/ � diamS

for all s 2 S .

Moreover, some results of S.-M. Jung concerning the Hyers–Ulam stability of
isometries on a restricted domain will be presented in Theorems 13.11 and 13.13
(ref. [178]).
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Section 13.3 will be devoted to the fixed point method for studying the stability
problem of isometries. Recently, by applying the fixed point method, S.-M. Jung
could present a short and simple proof for the Hyers–Ulam–Rassias stability of
isometries of which domain is a normed space and range is a Banach space in which
the parallelogram law holds true (see Theorems 13.15 and 13.17).

Let E1 and E2 be real or complex Hilbert spaces with the inner products and the
associated norms denoted by h�; �i and k � k, respectively. A function f W E1 ! E2
is a solution of the orthogonality equation hf .x/; f .y/i D hx; yi if and only if it is
a linear isometry. Functions f; g W E1 ! E2 are called phase-equivalent if and only
if there exists a function � W E1 ! S such that g.x/ D �.x/f .x/ for each x 2 E1,
where we set S D ˚

z 2 K j jzj D 1
�
. A functional equation

jhf .x/; f .y/ij D jhx; yij

is called the Wigner equation (or the generalized orthogonality equation).
In the last section of Chapter 13, we will present a theorem of J. Chmieliński and

S.-M. Jung concerning the Hyers–Ulam–Rassias stability of the Wigner equation on
a restricted domain (see Theorem 13.20 or [66]):

If a function f W E1 ! E2 satisfies the inequality

ˇ̌jhf .x/; f .y/ij � jhx; yijˇ̌ � '.x; y/;

for all x; y 2 D, with the function ' W E21 ! Œ0;1/ satisfying the property

lim
mCn!1 cmCn'.c�mx; c�ny/ D 0;

for all x; y 2 D, where

D D
� ˚
x 2 E1 j kxk � d

�
.for 0 < c < 1/;˚

x 2 E1 j kxk � d
�
.for c > 1/

for given constants c > 0 .c ¤ 1/ and d � 0. Then there exists a function I W E1 !
E2 satisfying the Wigner equation and such that

kf .x/ � I.x/k � p
'.x; x/

for all x 2 D. The function I is unique up to a phase-equivalent function.

One of the simplest functional equations is the associativity equation

F
�
x; F.y; z/

� D F
�
F.x; y/; z

�

representing the famous associativity axiom x � .y � z/ D .x � y/ � z which plays an
important role in definitions of algebraic structures. The superstability phenomenon
of the associativity equation will be demonstrated in Section 14.1 (Theorem 14.1
or [4]).
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In Section 14.2, the stability problems of an important functional equation

f .xy/ D xf .y/C f .x/y

representing multiplicative derivations in algebras will be discussed. P. Šemrl [327]
obtained the first result concerning the superstability of this equation for functions
between operator algebras. In this section, a Hyers–Ulam stability result presented
by J. Tabor as an answer to a question of G. Maksa will be formulated in Theorem
14.2 (ref. [239, 260, 349]).

The gamma function� is very useful to develop other functions which have phys-
ical applications. In Section 14.3, the Hyers–Ulam–Rassias stability of the gamma
functional equation

f .x C 1/ D xf .x/

and a generalized beta functional equation

f .x C p; y C q/ D  .x; y/f .x; y/

will be proved (see Theorems 14.3 and 14.4 or [148, 160]).
The Fibonacci sequence is one of the most well-known number sequences. If Fn

stands for the nth Fibonacci number for any n 2 N and F0 D 0, then the Fibonacci
numbers satisfy the equation

Fn D Fn�1 C Fn�2 for all n � 2

(ref. [225]). From this formula, we derive a functional equation

f .x/ D f .x � 1/C f .x � 2/;

which is called the Fibonacci functional equation. The Hyers–Ulam stability of the
generalized Fibonacci functional equation

f .x/ D pf .x � 1/� qf .x � 2/;

where p and q are fixed real numbers with q ¤ 0 and p2 � 4q ¤ 0, will be proved
in the last section.

Besides, there are a large number of valuable results concerning the stability
problems of various functional equations which cannot be presented in this book for
lack of space (see, e.g., [198, 243, 299, 305]).



Chapter 2
Additive Cauchy Equation

The functional equation f .x C y/ D f .x/ C f .y/ is the most famous among the
functional equations. Already in 1821, A. L. Cauchy solved it in the class of contin-
uous real-valued functions. It is often called the additive Cauchy functional equation
in honor of A. L. Cauchy. The properties of this functional equation are frequently
applied to the development of theories of other functional equations. Moreover, the
properties of the additive Cauchy equation are powerful tools in almost every field of
natural and social sciences. In Section 2.1, the behaviors of solutions of the additive
functional equation are described. The Hyers–Ulam stability problem of this equa-
tion is discussed in Section 2.2, and theorems concerning the Hyers–Ulam–Rassias
stability of the equation are proved in Section 2.3. The stability on a restricted do-
main and its applications are introduced in Section 2.4. The method of invariant
means and the fixed point method will be explained briefly in Sections 2.5 and 2.6.
In Section 2.7, the composite functional congruences will be surveyed. The stability
results for the Pexider equation will be treated in the last section.

2.1 Behavior of Additive Functions

The history of the study of functional equations is long. Already in 1821, A. L.
Cauchy [60] noted that every continuous solution of the additive Cauchy functional
equation

f .x C y/ D f .x/C f .y/; (2.1)

for all x; y 2 R, is linear. Every solution of the additive Cauchy equation (2.1) is
called an additive function.

First, we will solve the additive Cauchy equation (2.1) under some weaker con-
ditions than that of A. L. Cauchy (ref. [59]).

Theorem 2.1. If an additive function f W R ! R satisfies one of the following
conditions, then there exists a real constant c such that f .x/ D cx for all x 2 R:

(i) f is continuous at a point;
(ii) f is monotonic on an interval of positive length;

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 2, c� Springer Science+Business Media, LLC 2011
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(iii) f is bounded from above or below on an interval of positive length;
(iv) f is integrable;
(v) f is Lebesgue measurable;

(vi) f is a Borel function.

Proof. We prove the theorem under the condition .i/ only. By induction on n we
first prove

f .nx/ D nf .x/ .a/

for all x 2 R and n 2 N . Let x in R be arbitrary. Obviously, .a/ is true for n D 1.
Assume now that .a/ is true for some n. Then, by .a/, we get

f ..nC 1/x/ D f .nx/C f .x/ D nf .x/C f .x/ D .nC 1/f .x/:

If we substitute x=n for x in .a/, we obtain

f .x=n/ D .1=n/f .x/: .b/

Following from .a/ and .b/ yields

f .qx/ D qf .x/ .c/

for any x 2 R and for all q 2 Q.
Finally, by letting x D 1 in .c/ and considering the condition .i/, we have

f .x/ D cx for any x 2 R, where c D f .1/. ut
As indicated in the previous theorem, if a solution of the additive Cauchy equa-

tion (2.1) additionally satisfies one of the very weak conditions .i/ – .v/, then it has
the linearity.

Every additive function which is not linear, however, displays a very strange
behavior presented in the following theorem (ref. [2]):

Theorem 2.2. The graph of every additive function f W R ! R which is not of the
form f .x/ D cx, for all x 2 R, is dense in R2.

Proof. The graph of f is the set

G D ˚
.x; y/ 2 R2 j y D f .x/

�
:

Choose a real number x1 ¤ 0. Since f is not of the form f .x/ D cx for any real
constant c, there exists a real number x2 ¤ 0 such that

f .x1/=x1 ¤ f .x2/=x2:

Namely, ˇ
ˇ
ˇ
ˇ
x1 f .x1/

x2 f .x2/

ˇ
ˇ
ˇ
ˇ ¤ 0:
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This means that the vectors Ep1 D .x1; f .x1// and Ep2 D .x2; f .x2// are linearly
independent and thus span the whole plane R2. Let Ep be an arbitrary plane vector.
Then there exist rational numbers q1 and q2 such that j Ep � .q1 Ep1 C q2 Ep2/j � " for
any " > 0, since Q2 is dense in R2. Now,

q1 Ep1 C q2 Ep2 D q1
�
x1; f .x1/

�C q2
�
x2; f .x2/

�

D �
q1x1 C q2x2; q1f .x1/C q2f .x2/

�

D �
q1x1 C q2x2; f .q1x1 C q2x2/

�
:

The last inequality follows from .c/ in the proof of Theorem 2.1. Hence,

G12 D ˚
.x; y/ 2 R2 j x D q1x1 C q2x2; y D f .x/; q1; q2 2 Q

�

is dense in R2. From the fact G12 � G we conclude that G is dense in R2 which
completes the proof of our theorem. ut

We now give some results concerning the additive complex-valued functions de-
fined on the complex plane:

If an additive function f W C ! C is continuous, then there exist complex
constants c1 and c2 with f .z/ D c1z C c2z for all z 2 C, where z denotes the
complex conjugate of z.

Unlike the case of real-valued additive functions on the reals, the complex-valued
continuous additive functions on the complex plane are not linear. However, every
complex-valued additive function is linear if it is analytic or differentiable.

2.2 Hyers–Ulam Stability

As stated in the introduction, S. M. Ulam [354] raised the following question con-
cerning the stability of homomorphisms:

Let G1 and G2 be a group and a metric group with a metric d.�; �/, respectively.
Given " > 0, does there exist a ı > 0 such that if a function h W G1 ! G2
satisfies the inequality d

�
h.xy/; h.x/h.y/

�
< ı for all x; y 2 G1, then there exists

a homomorphismH W G1 ! G2 with d
�
h.x/;H.x/

�
< " for all x 2 G1?

D. H. Hyers presented the first result concerning the stability of functional equa-
tions. Indeed, he obtained a celebrated theorem while he was trying to answer the
question of Ulam (ref. [135]).

Theorem 2.3 (Hyers). Let f W E1 ! E2 be a function between Banach spaces
such that

kf .x C y/ � f .x/ � f .y/k � ı (2.2)
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for some ı > 0 and for all x; y 2 E1. Then the limit

A.x/ D lim
n!1 2�nf .2nx/ (2.3)

exists for each x 2 E1 and A W E1 ! E2 is the unique additive function such that

kf .x/ �A.x/k � ı (2.4)

for any x 2 E1. Moreover, if f .tx/ is continuous in t for each fixed x 2 E1, then A
is linear.

Proof. For any x 2 E1 the inequality kf .2x/ � 2f .x/k � ı is obvious from (2.2).
Replacing x by x=2 in this inequality and dividing by 2 we get

k.1=2/f .x/� f .x=2/k � .1=2/ı

for any x 2 E1. Now, make the induction assumption

�
�2�nf .x/ � f �2�nx

��� � �
1 � 2�n�ı: .a/

It then follows from the last two inequalities that

�
�.1=2/f .2�nx/ � f �2�n�1x

��� � .1=2/ı

and
�
�2�n�1f .x/ � .1=2/f .2�nx/

�
� � .1=2/.1� 2�n/ı:

Hence,
�
�2�n�1f .x/ � f �2�n�1x

��� � �
1 � 2�n�1�ı:

Therefore, the inequality .a/ is true for all x 2 E1 and n 2 N .
Put qn.x/ D 2�nf .2nx/, where n 2 N and x 2 E1. Then

qm.x/ � qn.x/ D 2�mf .2mx/ � 2�nf .2nx/

D 2�m�f .2m�n2nx/ � 2m�nf .2nx/
�
:

Therefore, if m < n, we can apply the inequality .a/ to the last equality and we get

kqm.x/ � qn.x/k � .2�m � 2�n/ı

for all x 2 E1. Hence, the Hyers–Ulam sequence fqn.x/g is a Cauchy sequence for
each x, and since E2 is complete, there exists a limit function

A.x/ D lim
n!1 qn.x/:
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Let x and y be any two points of E1. It follows from (2.2) that

kf .2nx C 2ny/ � f .2nx/ � f .2ny/k � ı

for any n 2 N . Dividing by 2n and letting n ! 1 we see that A is an additive
function. If we replace x by 2nx in .a/ and take the limit, we have the inequality
(2.4).

Suppose that A0 W E1 ! E2 was another additive function satisfying (2.4) in
place of A, and such that A.y/ ¤ A0.y/ for some y 2 E1. For any integer n >
2ı=kA.y/ � A0.y/k we see that the inequality kA.ny/ � A0.ny/k > 2ı holds. On
the other hand, this inequality contradicts the inequalities

kA.ny/ � f .ny/k � ı and kA0.ny/ � f .ny/k � ı:

Hence, A is the unique additive function satisfying the inequality (2.4).
Assume that f is continuous at y. If A is not continuous at a point x 2 E1,

then there exist an integer k and a sequence fxng in E1 converging to zero such that
kA.xn/k > 1=k for any n 2 N . Let m be an integer greater than 3kı. Then

kA.mxn C y/ �A.y/k D kA.mxn/k > 3ı:

On the other hand,

kA.mxn C y/ � A.y/k � kA.mxn C y/ � f .mxn C y/k
C kf .mxn C y/ � f .y/k C kf .y/ �A.y/k

� 3ı

for sufficiently large n, since f .mxn C y/ ! f .y/ as n ! 1. This contradiction
means that the continuity of f at a point in E1 implies the continuity of A on E1.

For a fixed x 2 E1, if f .tx/ is continuous in t , then it follows from the above
consideration that A.tx/ is continuous in t , hence A is linear. ut

The Hyers–Ulam stability result of Theorem 2.3 remains valid ifE1 is an abelian
semigroup (ref. [105]).

The following corollary has been proved in the proof of Theorem 2.3.

Corollary 2.4. Under the hypotheses of Theorem 2.3, if f is continuous at a single
point of E1, then A is continuous everywhere in E1.

As we see, we can explicitly construct the unique additive function satisfying
(2.4) by means of the method expressed in (2.3). D. H. Hyers was the first person to
suggest this method known as a direct method because it allows us to construct the
additive function A satisfying (2.4) directly from the given function f in Theorem
2.3. It is the most powerful tool to study the stability of several functional equations
and will be frequently used to construct certain function which is a solution of a
given functional equation.
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2.3 Hyers–Ulam–Rassias Stability

After Hyers gave an affirmative answer to Ulam’s question, a large number of papers
have been published in connection with various generalizations of Ulam’s problem
and Hyers’s theorem.

There is no reason for the Cauchy difference f .x C y/ � f .x/ � f .y/ to be
bounded as in the expression of (2.2). Toward this point, Th. M. Rassias tried to
weaken the condition for the Cauchy difference and succeeded in proving what is
now known to be the Hyers–Ulam–Rassias stability for the additive Cauchy equa-
tion (see [159, 298, 301, 306]). This terminology is justified because the theorem of
Th. M. Rassias (Theorem 2.5 below) has strongly influenced mathematicians study-
ing stability problems of functional equations. In fact, Th. M. Rassias [285] proved
the following:

Theorem 2.5 (Rassias). Let E1 and E2 be Banach spaces, and let f W E1 ! E2
be a function satisfying the functional inequality

kf .x C y/� f .x/ � f .y/k � �
�kxkp C kykp� (2.5)

for some � > 0, p 2 Œ0; 1/, and for all x; y 2 E1. Then there exists a unique
additive function A W E1 ! E2 such that

kf .x/ �A.x/k � 2�

2 � 2p kxkp (2.6)

for any x 2 E1. Moreover, if f .tx/ is continuous in t for each fixed x 2 E1, then A
is linear.

Proof. By induction on n, we prove that

k2�nf .2nx/ � f .x/k � �kxkp
n�1X

mD0
2m.p�1/ .a/

for any n 2 N . Putting y D x in (2.5) and dividing by 2 yield the validity of .a/
for n D 1. Assume now that .a/ is true and we want to prove it for the case nC 1.
However, this is true because by .a/ we obtain

k2�nf .2n2x/ � f .2x/k � �k2xkp
n�1X

mD0
2m.p�1/;

therefore

�
�2�n�1f

�
2nC1x

� � .1=2/f .2x/
�
� � �kxkp

nX

mD1
2m.p�1/:
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By the triangle inequality, we get

�
�2�n�1f

�
2nC1x

� � f .x/��
� ��2�n�1f

�
2nC1x

� � .1=2/f .2x/
��C k.1=2/f .2x/ � f .x/k

� �kxkp
nX

mD0
2m.p�1/;

which completes the proof of .a/.
It then follows that

k2�nf .2nx/ � f .x/k � 2�

2 � 2p
kxkp ; .b/

since
1X

mD0
2m.p�1/ converges to 2=.2�2p/, as 0 � p < 1. However, form > n > 0,

we have

k2�mf .2mx/ � 2�nf .2nx/k D 2�nk2�.m�n/f .2m�n2nx/ � f .2nx/k

� 2n.p�1/ 2�

2 � 2p kxkp :

Therefore, the Rassias sequence f2�nf .2nx/g is a Cauchy sequence for each x 2
E1. As E2 is complete, we can define a function A by (2.3). It follows that

�
�f
�
2n.x C y/

� � f .2nx/ � f .2ny/�� � 2np�
�kxkp C kykp�:

Dividing by 2n the last expression and letting n ! 1, together with (2.3), yield
that A is an additive function.

The inequality (2.6) immediately follows from .b/ and (2.3).
We now want to prove that A is such a unique additive function. Assume that

there exists another one, denoted by A0 W E1 ! E2. Then there exists a constant
"1 � 0 and q .0 � q < 1/ with

kA0.x/ � f .x/k � "1kxkq : .c/

By the triangle inequality, (2.6), and .c/ we obtain

kA.x/ �A0.x/k � kA.x/ � f .x/k C kf .x/ � A0.x/k
� 2�

2 � 2p
kxkp C "1kxkq :
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Therefore,

kA.x/ � A0.x/k D .1=n/kA.nx/ �A0.nx/k
� 1

n

	
2�

2 � 2p
knxkp C "1knxkq




D np�1 2�

2 � 2p
kxkp C nq�1"1kxkq

for all n 2 N . By letting n ! 1 we get A.x/ D A0.x/ for any x 2 E1.
Assume that f .tx/ is continuous in t for any fixed x 2 E1. Since A.x C y/ D

A.x/ C A.y/ for each x; y 2E1, A.qx/ D qA.x/ holds true for any rational
number q. Fix x0 in E1 and � in E�

2 (the dual space of E2). Define a function
� W R ! R by

�.t/ D �
�
A.tx0/

�

for all t 2 R. Then � is additive. Moreover, � is a Borel function because of
the following reasoning: Let �.t/ D lim

n!12
�n�

�
f .2ntx0/

�
and set �n.t/ D

2�n�
�
f .2ntx0/

�
. Then �n.t/ are continuous functions. �.t/ is the pointwise limit

of continuous functions, thus �.t/ is a Borel function. According to Theorem 2.1, �
is linear and hence it is continuous. Let a 2 R. Then a D lim

n!1qn, where fqng is a

sequence of rational numbers. Hence,

�.at/ D �
�
t lim
n!1 qn

�
D lim

n!1�.tqn/ D lim
n!1 qn�.t/ D a�.t/:

Therefore, �.at/ D a�.t/ for any a 2 R. Thus, A.ax/ D aA.x/ for any a 2 R.
Hence, A is a linear function. ut

This theorem is a remarkable generalization of Theorem 2.3 and stimulated the
concern of mathematicians toward the study of the stability problems of functional
equations. T. Aoki [7] has provided a proof of a special case of Th. M. Rassias’s
theorem just for the stability of the additive function using the direct method. Aoki
did not prove the last assertion of Rassias’s Theorem 2.5 which provides the stability
of the linear function.

Th. M. Rassias [289] noticed that the proof of this theorem also works for p < 0
and asked whether such a theorem can also be proved for p � 1. Z. Gajda [112]
answered the question of Rassias for the case of p > 1 by a slight modification of
the expression in (2.3). His idea to prove the theorem for this case is to replace n by
�n in the formula (2.3).

It turns out that 1 is the only critical value of p to which Theorem 2.5 cannot be
extended. Z. Gajda [112] showed that this theorem is false forp D 1 by constructing
a counterexample:

For a fixed � > 0 and � D .1=6/� define a function f W R ! R by

f .x/ D
1X

nD0
2�n�.2nx/;
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where the function � W R ! R is given by

�.x/ D

8
<̂

:̂

� .for x 2 Œ1;1//;

�x .for x 2 .�1; 1//;
�� .for x 2 .�1;�1�/:

Then the function f serves as a counterexample for p D 1 as presented in the
following theorem.

Theorem 2.6 (Gajda). The function f defined above satisfies

jf .x C y/ � f .x/ � f .y/j � �
�jxj C jyj� (2.7)

for all x; y 2 R, while there is no constant ı � 0 and no additive function
A W R ! R satisfying the condition

jf .x/ � A.x/j � ıjxj (2.8)

for all x; y 2 R.

Proof. If x D y D 0, then (2.7) is trivially satisfied.
Now, we assume that 0 < jxj C jyj < 1. Then there exists an N 2 N such that

2�N � jxj C jyj < 2�.N�1/:

Hence,
ˇ
ˇ2N�1x

ˇ
ˇ < 1,

ˇ
ˇ2N�1y

ˇ
ˇ < 1, and

ˇ
ˇ2N�1.x C y/

ˇ
ˇ < 1, which implies that

for each n 2 f0; 1; : : : ; N � 1g the numbers 2nx, 2ny, and 2n.x C y/ belong to the
interval .�1; 1/. Since � is linear on this interval, we infer that

�
�
2n.x C y/

� � �.2nx/ � �.2ny/ D 0

for n 2 f0; 1; : : : ; N � 1g. As a result, we get

jf .x C y/ � f .x/ � f .y/j
jxj C jyj �

1X

nDN

ˇ
ˇ�
�
2n.x C y/

� � �.2nx/ � �.2ny/ˇˇ
2n
�jxj C jyj�

�
1X

kD0

3�

2k2N
�jxj C jyj�

�
1X

kD0

3�

2k

D �:
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Finally, assume jxj C jyj � 1. Then merely by means of the boundedness of f
we have

jf .x C y/ � f .x/ � f .y/j
jxj C jyj � 6� D �;

since

jf .x/j �
1X

nD0
2�n� D 2�:

Now, contrary to what we claim, suppose that there exist a constant ı � 0 and an
additive functionA W R ! R such that (2.8) holds true. Since f is defined by means
of a uniformly convergent series of continuous functions, f itself is continuous.
Hence, A is bounded on some neighborhood of zero. Then, by Theorem 2.1, there
exists a real constant c such that A.x/ D cx for all x 2 R. Hence, it follows from
(2.8) that

jf .x/ � cxj � ıjxj;
for any x 2 R, which implies

jf .x/j=jxj � ı C jcj

for all x 2 R. On the other hand, we can choose an N 2 N so large that N� >

ı C jcj. If we choose an x 2 �
0; 2�.N�1/�, then we have 2nx 2 .0; 1/ for each

n 2 f0; 1; : : : ; N � 1g. Consequently, for such an x we get

f .x/

x
�
N�1X

nD0

�.2nx/

2nx
D
N�1X

nD0

�2nx

2nx
D N� > ı C jcj;

which leads to a contradiction. ut
Similarly, Th. M. Rassias and P. Šemrl [310] introduced a simple counterexample

to Theorem 2.5 for p D 1 as follows:
The continuous real-valued function defined by

f .x/ D
�
x log2.x C 1/ .for x � 0/;

x log2 jx � 1j .for x < 0/

satisfies the inequality (2.7) with � D 1 and jf .x/� cxj=jxj ! 1, as x ! 1, for
any real number c.

Furthermore, they also investigated the behaviors of functions which satisfy the
inequality (2.7).

Theorem 2.7. Let f W Rk ! R` be a function such that f .tx/ is continuous in t
for each fixed x, where k and ` are given positive integers. Assume that f satisfies
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the inequality (2.7) for any x; y 2 Rk . Then for any " > 0, there exists a real
numberM" such that

jf .x/j �
�
M"jxj1C" .for jxj � 1/;

M"jxj1�" .for jxj � 1/:
(2.9)

Proof. Applying (2.7) and induction on n, we can prove

ˇ̌
f .x1 C � � � C xn/� f .x1/� � � � � f .xn/

ˇ̌

� �.n � 1/�jx1j C � � � C jxnj�: .a/

Let fe1; : : : ; ekg be the standard basis in Rk . An arbitrary vector x 2 Rk with
jxj � 1 can be expressed in the form

x D 	1e1 C � � � C 	kek;

where j	i j � 1 for i 2 f1; 2; : : : ; kg. It follows from .a/ that
ˇ̌
f .	1e1 C � � � C 	kek/� f .	1e1/ � � � � � f .	kek/

ˇ̌

� �.k � 1/
�j	1e1j C � � � C j	kekj�

� �.k � 1/k:

Then
ˇ
ˇf .	1e1 C � � � C 	kek/

ˇ
ˇ � �.k � 1/k C jf .	1e1/j C � � � C jf .	kek/j

� �.k � 1/k CM1 C � � � CMk;

where
Mi D max

j�j�1
jf .	ei /j:

Hence, f is bounded on the unit ball in Rk . Thus, there exists a real number c such
that

jf .x/j � cjxj .b/

for all x satisfying 1=2 � jxj � 1.
Claim that

ˇ̌
2�nf .2nx/ � f .x/

ˇ̌ � n� jxj .c/

for all n 2 N . By (2.7), .c/ is true for n D 1. Assume now that .c/ is true for some
n > 0. Using the triangle inequality and .c/, we get

ˇ
ˇ2�n�1f

�
2nC1x

� � f .x/ˇˇ
� ˇ
ˇ2�n�1f .2n2x/ � .1=2/f .2x/ˇˇC j.1=2/f .2x/� f .x/j

� .nC 1/� jxj;

which ends the proof of .c/.
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For any x with jxj > 1, we can find an integer n such that the vector y D 2�nx
satisfies 1=2 � jyj � 1. Moreover, we have n � log2 jxj C 1. It follows from
.c/ that

j2�nf .x/ � f .y/j � n� jyj:
Therefore, by .b/, we obtain

jf .x/j � 2n
�jf .y/j C n� jyj� � 2njyj.c C n�/ � jxj�c C �.log2 jxj C 1/

�
;

which proves the first part of (2.9).
A similar argument as in the proof of .c/ yields

j2nf .2�nx/ � f .x/j � n� jxj

for any n 2 N . For any x with jxj � 1, there exists an integer n such that the vector
y D 2nx satisfies 1=2 � jyj � 1. It follows that n � � log2 jxj. As in the previous
case, we obtain

j2nf .x/ � f .y/j � n� jyj:

Thus,

jf .x/j � 2�n�jf .y/j C n� jyj� � jxj�c � � log2 jxj�:

Hence, the second part of (2.9) also holds true. ut
Th. M. Rassias [290] asked whether (2.6) gives the best possible estimate of the

difference kf .x/ � A.x/k for p ¤ 1. Th. M. Rassias and J. Tabor [313] answered
the question for p D 1=2, and J. Brzdȩk has partially answered the question for the
case of p > 0 .p ¤ 1/. As it is an interesting subject, we introduce the result of
Brzdȩk [30]:

Let � > 0 and p > 0 .p ¤ 1/ be given, and let A; f W R ! R be defined by

A.x/ D 0

for all x 2 R, and

f .x/ D sign.x/
�

j2p�1 � 1j jxjp

for all x 2 R, where sign W R ! f�1; 0; 1g is the sign function. Then A is an
additive function and

jf .x/ �A.x/j D �

j2p�1 � 1j jxjp

for all x 2 R. We now aim to show that f also satisfies the inequality (2.5) for all
x; y 2 R.
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Let us start with the following lemma:

Lemma 2.8. If f1; f2 W Œ0; 1� ! R are functions defined by

f1.x/ D j.x C 1/p � xp � 1j=.xp C 1/;

f2.x/ D j.1 � x/p C xp � 1j=.xp C 1/

for some p > 0 .p ¤ 1/ and for any x 2 Œ0; 1�, then f1.x/ � f2.x/ for all
x 2 Œ0; 1�.
Proof. Put gi .x/ D fi .x/.x

p C 1/ for x 2 Œ0; 1� and i 2 f1; 2g. Note that, in the
case p > 1,

.1 � x/p C xp � 1 and .x C 1/p � xp � 1 for x 2 Œ0; 1�

and, in the case 0 < p < 1,

.1 � x/p C xp � 1 and .x C 1/p � xp � 1 for x 2 Œ0; 1�:

Hence, for every x 2 Œ0; 1�,

g1.x/ D
�
.x C 1/p � xp � 1 .for p > 1/;
1C xp � .x C 1/p .for 0 < p < 1/

.a/

and

g2.x/ D
�
1 � xp � .1 � x/p .for p > 1/;
.1 � x/p C xp � 1 .for 0 < p < 1/:

Consequently, for x 2 Œ0; 1�,

g0
1.x/ D

�
p.x C 1/p�1 � pxp�1 .for p > 1/;
pxp�1 � p.x C 1/p�1 .for 0 < p < 1/

and

g0
2.x/ D

�
p.1 � x/p�1 � pxp�1 .for p > 1/;
pxp�1 � p.1 � x/p�1 .for 0 < p < 1/:

Further, if p > 1, then

.x C 1/p�1 � xp�1 � .1 � x/p�1 � xp�1 for x 2 Œ0; 1�;

and if 0 < p < 1,

xp�1 � .x C 1/p�1 > xp�1 � .1 � x/p�1 for x 2 .0; 1/:
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Thus, g0
1.x/ � g0

2.x/ for any x 2 .0; 1/. Hence, g1.x/ � g2.x/ for all x 2 Œ0; 1�,
since g1.0/ D g2.0/ D 0. That is, f1.x/ � f2.x/ for each x 2 Œ0; 1�. ut
Lemma 2.9. Let f1 be the same as in Lemma 2.8. Then

sup
˚
f1.x/ j x 2 Œ0; 1�� D ˇ

ˇ2p�1 � 1ˇˇ

for p > 0 and p ¤ 1.

Proof. Suppose f 0
1.x/ D 0. Considering .a/ in the proof of Lemma 2.8, it follows

from the hypothesis that

�
p.x C 1/p�1 � pxp�1��xp C 1

� � pxp�1�.x C 1/p � xp � 1
� D 0:

The solution of this equation is x D 1 only.
In this way, we have shown that

sup
˚
f1.x/ j x 2 Œ0; 1�� D max

˚
f1.0/; f1.1/

� D ˇ
ˇ2p�1 � 1ˇˇ;

which ends the proof. ut
J. Brzdȩk [30] proved that f satisfies the inequality (2.5):

Theorem 2.10 (Brzdȩk). The function f satisfies the functional inequality (2.5)
for all x; y 2 R.

Proof. First, let x D y D 0. Since f .0/ D 0, it is clear that f satisfies (2.5) for this
case.

Now assume .x; y/ ¤ .0; 0/, and let

g.x; y/ D
ˇ
ˇ2p�1 � 1

ˇ
ˇ

�
�jxjp C jyjp�

ˇ
ˇf .x C y/ � f .x/ � f .y/

ˇ
ˇ

for all x; y 2 R with x2 C y2 > 0. Let us define

s D sup
˚
g.x; y/ j x; y 2 R; x2 C y2 > 0

�
:

Since g.x; y/ D g.y; x/ for x; y 2 R with x2 C y2 > 0, it is easily seen that

s D sup
˚
g.x; y/ j x; y 2 R; jxj � jyj; x2 C y2 > 0

�
:

Moreover, if xy � 0, x2 C y2 > 0 and jxj � jyj, then

g.x; y/ D ˇ
ˇjx C yjp � jxjp � jyjpˇˇı�jxjp C jyjp�;
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and if xy < 0 and jxj � jyj, then

g.x; y/ D ˇ
ˇjx C yjp C jxjp � jyjpˇˇı�jxjp C jyjp�:

Define

s1 D sup
˚
g.x; y/ j xy � 0; x2 C y2 > 0; jxj � jyj�

and

s2 D sup
˚
g.x; y/ j xy < 0; jxj � jyj�:

Then

s1 D sup
˚
f1.x/ j x 2 Œ0; 1��

and

s2 D sup
˚
f2.x/ j x 2 Œ0; 1��:

Therefore, by Lemmas 2.8 and 2.9, we get

s D max
˚
s1; s2

� D ˇ
ˇ2p�1 � 1

ˇ
ˇ

which implies that f satisfies (2.5) for all x; y 2 R with x2 C y2 > 0. ut
Until now, we have proved that �kxkp=j1 � 2p�1j gives the best possible upper

bound for the norm of the difference f .x/ �A.x/ in the case of p > 0 .p ¤ 1/.
Now, we return to the subject concerning the generalization of the bound condi-

tion for the norm of the Cauchy difference in (2.5).
A function H W Œ0;1/2 ! Œ0;1/ is called homogeneous of degree p if it satis-

fiesH.tu; tv/ D tpH.u; v/ for all t; u; v 2 Œ0;1/. We can replace �
�kxkp Ckykp�

with H
�kxk; kyk�, where H W Œ0;1/2 ! Œ0;1/ is a monotonically increasing

symmetric homogeneous function of degree p � 0, p ¤ 1, and still obtain a stabil-
ity result. More precisely, Th. M. Rassias and P. Šemrl [311] generalized the result
of Theorem 2.5 as follows:

Theorem 2.11 (Rassias and Šemrl). LetE1 andE2 be a normed space and a real
Banach space, respectively. Assume that H W Œ0;1/2 ! Œ0;1/ is a monotonically
increasing symmetric homogeneous function of degree p, where p 2 Œ0;1/nf1g.
Let a function f W E1 ! E2 satisfy the inequality

kf .x C y/ � f .x/ � f .y/k � H
�kxk; kyk� (2.10)

for any x; y 2 E1. Then there exists a unique additive function A W E1 ! E2 such
that

kf .x/ �A.x/k � H.1; 1/

j2p � 2jkxkp (2.11)
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for any x 2 E1. Moreover, the function A is linear if for each fixed x 2 E1 there
exists a real number ıx > 0 such that f .tx/ is bounded on Œ0; ıx�.

Proof. The proof of the first part of the theorem is similar to Theorem 2.3 or 2.5.
Therefore, we prove only the linearity of A under the condition that f .tx/ is locally
bounded for each fixed x. So, let us assume that for every fixed x 2 E1 there exists a
positive number ıx such that the function kf .tx/k is bounded on Œ0; ıx�. Fix z 2 E1
and ' 2 E�

2 . Here, E�
2 denotes the dual space of E2. Let us define

Mz D sup
˚kf .tz/k j t 2 Œ0; ız�

�
:

Consider the function � W R ! R defined by �.t/ D '
�
A.tz/

�
. It is obvious that �

is additive. For any real number t 2 Œ0; ız�, we have

j�.t/j D ˇ
ˇ'
�
A.tz/

�ˇˇ � k'k kA.tz/k � k'k�kA.tz/ � f .tz/k C kf .tz/k�:
Using (2.11) we obtain

j�.t/j � k'k
	
H.1; 1/

j2p � 2jı
p
z kzkp CMz



:

Since the additive function � is bounded on an interval of positive length, in view
of Theorem 2.1, it is of the form

�.t/ D �.1/t

for all t 2 R. Therefore, '
�
A.tz/

� D '
�
tA.z/

�
for any t 2 R, and consequently A

is a linear function. ut
As expected, an analogue of Theorem 2.11 cannot be obtained in the case thatH

is a monotonically increasing symmetric homogeneous function of degree 1. It is not
difficult to construct a counterexample from the following lemma presented in the
paper [311].

Lemma 2.12. Let h W Œ0;1/ ! Œ0;1/ be a monotonically increasing function
satisfying

lim
t!1h.t/ D 1; h.1/ D 1; and h.t/ D th.1=t/

for all t > 0. Then there exists a continuous monotonically increasing function
g W Œ0;1/ ! Œ0;1/ such that

(i) g.0/ D 0,
(ii) g.t/ ! 1 as t ! 1,

(iii) g.t C s/ � g.t/ � h.s=t/ for all s; t 2 Œ0;1/, t ¤ 0.

Proof. Since h.t/ ! 1 as t ! 1, we can find a monotonically increasing se-
quence fnkg of positive integers satisfying

n1 D 1 and h.2nk / > k: .a/
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Let fakg be a sequence given by

a1 D 0; a2 D 2; and akC1 D 2nkak .b/

for k 2 f2; 3; : : :g.
We define

g.a1/ D 0 and g.ak/ D 1=3C 1=4C � � � C 1=.k C 1/

for k 2 f2; 3; : : :g. We extend g to Œ0;1/ such that g is piecewise linear. It is
obvious that g W Œ0;1/ ! Œ0;1/ is a continuous monotonically increasing function
satisfying .i/ and .ii/.

Let t be a real number with 0 < t � 1. Since h is a monotonically increasing
function satisfying h.1/ D 1, we have h.1=t/ � 1. It follows that th.1=t/ � t .
Using h.t/ D th.1=t/ we finally get that

h.t/ � t .c/

holds true for any t 2 .0; 1�.
In order to prove .iii/ let us first assume that t � s and choose k 2 N such that

t 2 Œak ; akC1�. The definition of g implies

g.t C s/� g.t/ � s

.k C 2/.akC1 � ak/
: .d /

For k > 1 we get using .b/ that

g.t C s/ � g.t/ � s

akC1
1

.k C 2/.1� 2�nk /
� s

akC1
� s

t
:

The relation .c/ completes the proof in this case. The case, when k D 1, is an
immediate consequence of .b/, .c/, and .d/.

Suppose now that s > t and choose k 2 N such that s 2 Œak ; akC1�. Let us set
a0 D 0. We will first consider the case that t � ak�1. Then we have

g.t C s/ � g.t/ � g.akC2/ � g.ak�1/ � 1=3C 1=4C 1=5 < 1:

The desired relation .iii/ follows now from h.1/ D 1 and s=t > 1.
It remains to consider the case when t < ak�1. This implies k � 3. Therefore,

g.t C s/� g.t/ � g.akC2/ D 1=3C 1=4C � � � C 1=.k C 3/ � k � 1:

Using .a/ we have

g.t C s/ � g.t/ � h
�
ak2

nk�1a�1
k

� � h
�
2nk�1sa�1

k

�
:
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Applying 2nk�1 t � 2nk�1ak�1 D ak in the previous inequality, we obtain

g.t C s/� g.t/ � h
�
2nk�1s2�nk�1 t�1

� D h.s=t/;

which ends the proof. ut
Using the result of the last lemma, Th. M. Rassias and P. Šemrl [311] have suc-

ceeded in finding a counterexample to Theorem 2.11 for the case in which H is a
monotonically increasing symmetric homogeneous function of degree 1.

Theorem 2.13. Assume that H W Œ0;1/2 ! Œ0;1/ is a symmetric monotonically
increasing homogeneous function of degree 1 such that

lim
s!1H.1; s/ D 1: (2.12)

Then there exists a continuous function f W R ! R satisfying

ˇ̌
f .t C s/� f .t/ � f .s/

ˇ̌ � H
�jt j; jsj�

for all t; s 2 R and

sup
t¤0

jf .t/ � A.t/j=jt j D 1 (2.13)

for any additive function A W R ! R.

Proof. For every real number t > 1we haveH.1; t/ � H.t; t/ D tH.1; 1/. This in-
equality yieldsH.1; 1/ ¤ 0 using (2.12). We can assume without loss of generality
that H.1; 1/ D 1. Let us define h W Œ0;1/ ! Œ0;1/ by h.t/ D H.1; t/. Obviously,
h is a monotonically increasing function satisfying h.t/ ! 1, as t ! 1, and
h.1/ D 1. Moreover, we have h.t/ D H.1; t/ D tH.1=t; 1/ D tH.1; 1=t/ D
th.1=t/ for any t > 0. We choose a function g as in Lemma 2.12 and define
f .t/ D .1=2/tg.t/ for all t � 0. We extend f to R as an odd function.

We first prove the inequality

jf .t C s/� f .t/ � f .s/j � H
�jt j; jsj� .a/

for all s; t 2 R. Clearly, .a/ holds true in the case that t D 0 or s D 0. Next, we
consider the case in which both numbers t and s are positive. Then we have

jf .t C s/� f .t/ � f .s/j D .1=2/
ˇ
ˇt
�
g.t C s/� g.t/

�C s
�
g.t C s/ � g.s/�ˇˇ:

As g is a monotonically increasing function, Lemma 2.12 .iii/ yields

jf .t C s/� f .t/ � f .s/j � .1=2/
�
th.s=t/C sh.t=s/

�

D .1=2/
�
H.t; s/CH.s; t/

�

D H
�jt j; jsj�:

Since f is an odd function, .a/ holds true for t; s < 0 as well.
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It remains to consider the case when t > 0 and s < 0. Let us first assume that
jt j > jsj. The left side of .a/ can be rewritten as jf .t/ � f .t C s/ � f .�s/j, but
t C s and �s are positive real numbers. Thus,

jf .t C s/ � f .t/ � f .s/j � H.t C s;�s/ � H
�jt j; jsj�:

The proof of .a/ in the case when jsj > jt j proceeds in a similar way.
Suppose now that there exists an additive function A W R ! R such that

sup
t¤0

jf .t/ � A.t/j=jt j < 1: .b/

As f is a continuous function, it is bounded on any finite interval. It follows from
.b/ that the additive function A is bounded on every finite interval Œa; b� of the real
line with 0 62 Œa; b�. This implies that A is of the form A.t/ D ct for some real
number c. For t � 0 we have

jf .t/ �A.t/j=jt j D j.1=2/g.t/� cj:
According to Lemma 2.12 .ii/, this contradicts .b/. ut

As seen in the above proof, the condition (2.12) is essential for the construction
of a function f satisfying (2.13). The above theorem is a generalization of the result
of Theorem 2.6 stating that the answer to Ulam’s problem is negative in the special
case that H

�jt j; jsj� D jt j C jsj.
In the following theorem, we will introduce the behavior of functions satisfying

the inequality (2.10), where H is a homogeneous function of degree 1 (ref. [311]).

Theorem 2.14. Let E1 and E2 be a real normed space with dimE1 > 1 and a real
Banach space, respectively. Suppose a function f W E1 ! E2 satisfies the inequal-
ity (2.10), where H W Œ0;1/2 ! Œ0;1/ is a symmetric monotonically increasing
homogeneous function of degree 1. Then the following conditions are equivalent:

(i) sup
kxk�1

kf .x/k < 1,

(ii) sup
kxkD1

kf .x/k < 1,

(iii) f is continuous at 0,
(iv) lim

kxk!1
kf .x/k=kxk1C" D 0 for any " > 0,

(v) lim
kxk!0

kf .x/k=kxk1�" D 0 for any " > 0.

Proof. Let us set H.1; 1/ D � . Claim that

k2�nf .2nx/ � f .x/k � .1=2/n�kxk .a/

and
k2nf .2�nx/ � f .x/k � .1=2/n�kxk .b/
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for any n 2 N . The proof of .a/ follows by induction on n. The case n D 1 is clear.
Assume now that .a/ is true for some n > 0 and we want to prove it for nC1. Using
the triangle inequality and .a/, we get

�
�2�n�1f

�
2nC1x

� � f .x/
�
� � �

�2�n�1f
�
2nC1x

� � .1=2/f .2x/��
C k.1=2/f .2x/� f .x/k

� .1=2/.nC 1/�kxk:

Replacing x with 2�nx in .a/ and multiplying the resulting inequality by 2n, we
obtain .b/.

The implications .i/ ) .ii/ and .v/ ) .iii/ are easily seen. In order to prove
.ii/ ) .i/, we choose a vector z such that kzk � 1. Since dimE1 > 1, the in-
tersection of the unit spheres S.0; 1/ D ˚

x 2 E1 j kxk D 1
�

and S.z; 1/ D˚
x 2 E1 j kx � zk D 1

�
is nonempty. Choose w 2 S.0; 1/ \ S.z; 1/. Clearly,

z D w C .z � w/. Since f satisfies (2.10), we have

kf .z/k � H
�kwk; kz � wk�C kf .w/k C kf .z � w/k

� � C 2 sup
kxkD1

kf .x/k:

Claim that .iii/ ) .i/. It is easy to see f .0/ D 0. From .iii/ it follows that there
exist positive real numbers ı andM such that kxk � ı yields kf .x/k � M . We fix
a positive integer n0 satisfying 2�n0 � ı. For every vector z 2 E1, kzk � 1, we get
using .b/ that

kf .z/k � .1=2/n0�kzk C 2n0kf .2�n0 z/k � .1=2/n0� C 2n0M:

Claim that .i/ ) .iv/. It follows from .i/ that there exists a real number c such
that

kf .x/k � ckxk .c/

for all x with 1=2 � kxk � 1. For any x with norm greater than 1 we can find
a positive integer n such that the vector y D 2�nx satisfies 1=2 � kyk � 1.
Moreover, we have n � log2 kxk C 1. It follows from .a/ that

k2�nf .x/ � f .y/k � .1=2/n�kyk:

Therefore,

kf .x/k � 2n
�kf .y/k C .1=2/n�kyk�

� 2nkyk�c C .1=2/n�
�

� kxk�c C .1=2/�.log2 kxk C 1/
�
;

which completes the proof of this implication.



2.3 Hyers–Ulam–Rassias Stability 39

Claim that .i/ ) .v/. For any x in the unit ball, kxk � 1, there exists an integer
n such that the vector y D 2nx satisfies 1=2 � kyk � 1. It follows that n �
� log2 kxk. As before we get

k2nf .x/ � f .y/k � .1=2/n�kyk:

Thus,

kf .x/k � 2�n�kf .y/k C .1=2/n�kyk� � kxk�c � .1=2/� log2 kxk�:

Hence, .v/ holds true.
Claim that .iv/ ) .ii/. It follows from .iv/ with " D 1 that there exist positive

real numbers 
 and M such that kxk � M implies kf .x/k � 
kxk2. Let us fix a
positive integer n0 satisfying 2n0 � M . Then for every z 2 E1 with kzk D 1, the
inequality kf .2n0z/k � 4n0
 is true. A simple use of .a/ completes the proof.

Applying a similar approach we can prove the implication .v/ ) .ii/. ut
The assumption that dimE1 > 1 is indispensable in the above theorem. Every

function f W R ! E2 satisfying (2.10), where H is a homogeneous function of
degree 1, is bounded on the unit sphere f�1; 1g. However, such functions need not
be bounded on the unit ball. The proof of the equivalence of the conditions .i/, .iii/,
.iv/, and .v/ works also in the case that dimE1 D 1. A function f W R2 ! R
defined by

f .t; s/ D
�
t C s .for t; s 2 Q/;
0 .for t 2 RnQ or s 2 RnQ/

is an example of a function satisfying (2.10), whereH is a monotonically increasing
symmetric homogeneous function of degree 1, of which point of continuity is only
0 (see [311]).

Under the additional assumption that sup
s�0
H.1; s/ < 1, Th. M. Rassias and

P. Šemrl [311] improved the previous result as follows:

Theorem 2.15. Let E1 and E2 be those in Theorem 2.14. Suppose a function
f W E1 ! E2 satisfies the inequality (2.10), where H W Œ0;1/2 ! Œ0;1/ is a
symmetric monotonically increasing homogeneous function of degree 1. Further-
more, assume that sup

s�0
H.1; s/ < 1. Then the conditions .i/, .ii/, and .iii/ given in

Theorem 2.14 are equivalent to the following condition:

(vi) there exists a real numberM such that kf .x/k � M kxk for all x 2 E1.

Proof. All we have to do is to prove that .i/ implies .vi/. Let us denote

sup
s�0

H.1; s/ D M1:
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Claim that
k.1=k/f .kx/ � f .x/k � M1kxk .a/

for any integer k > 1. The verification of .a/ follows by induction on k. In the case
k D 2, we have

k.1=2/f .2x/� f .x/k � .1=2/H
�kxk; kxk� � .1=2/M1kxk:

Assume now that .a/ is true for some k > 1 and we want to prove it for k C 1.
Using the triangle inequality and .a/, we get

�
�.k C 1/�1f

�
.k C 1/x

� � f .x/��
� ��.k C 1/�1f

�
.k C 1/x

� � .k C 1/�1f .kx/ � .k C 1/�1f .x/
��

C �
�.k C 1/�1f .kx/ � �

k=.k C 1/
�
f .x/

�
�

� .k C 1/�1H
�kxk; kkxk� C �

k=.k C 1/
�k.1=k/f .kx/ � f .x/k

� .k C 1/�1
�
M1kxk C kM1kxk�

D M1kxk:

It follows from .i/ that there exists a real number c such that .c/ in the proof
of Theorem 2.14 holds true for all x satisfying 1=2 � kxk � 1. For any x with
norm greater than 1 we can find an integer k .� 2/ such that the vector y D .1=k/x

satisfies 1=2 � kyk � 1. From .c/ in the proof of Theorem 2.14 and .a/ it follows

kf .x/k D kf .ky/k � kkyk.c CM1/ D kxk.c CM1/: .b/

A similar argument yields kf .x/k � kxk.c C M1/ for any x having norm smaller
than 1=2. The relations .c/ in the proof of Theorem 2.14 and .b/ demonstrate that
the assertion of the theorem holds true with M D c CM1. ut

In the following corollary, Rassias and Šemrl [311] generalized the result of
Theorem 2.7, i.e., it was proved that if a function f W E1 ! E2 satisfies the inequal-
ity (2.10), where H is the same as in Theorem 2.14, and some suitable condition,
then it behaves like that of Theorem 2.7.

Corollary 2.16. Let E1 and E2 be a finite-dimensional real normed space with
dimE1 > 1 and a real Banach space, respectively. Suppose a function f W E1 ! E2
satisfies the inequality (2.10), where H W Œ0;1/2 ! Œ0;1/ is a symmetric mono-
tonically increasing homogeneous function of degree 1. Moreover, assume that for
every x 2 E1 there exists a positive real number ıx such that the function kf .tx/k is
bounded on Œ0; ıx�. Then for every positive real number " there exists a real number
M" such that

kf .x/k �
�
M"kxk1C" .for kxk � 1/;

M"kxk1�" .for kxk � 1/:
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Further, assume that sup
s�0
H.1; s/ < 1. Then there exists a real numberM such that

kf .x/k � M kxk

for all x 2 E1.

Proof. All norms on a finite-dimensional vector space are equivalent. Thus, without
loss of generality, we can assume that E1 is a Euclidean space Rk . Let us set � D
H.1; 1/. For an arbitrary pair x; y 2 E1 we have

kf .x C y/ � f .x/ � f .y/k � H
�kxk; kyk�

� H
�kxk C kyk; kxk C kyk�

D �
�kxk C kyk�:

Applying induction on n we can easily prove

kf .x1 C � � � C xn/� f .x1/� � � � � f .xn/k
� �.n� 1/

�kx1k C � � � C kxnk�: (a)

Let fe1; : : : ; ekg be the standard basis in Rk . According to the hypothesis, there exist
positive real numbersM1, ı1; : : : ; ık such that jt j � ıi implies kf .tei /k � M1 for
i 2 f1; : : : ; kg. Choose a positive numberK . Using .a/ in the proof of Theorem 2.14
we can find a real number M2 such that jt j � K implies kf .tei /k � M2 for
i 2 f1; : : : ; kg.

An arbitrary vector x 2 Rk with kxk � K can be expressed in the form

x D t1e1 C � � � C tkek;

where jti j � K for i 2 f1; : : : ; kg. It follows from .a/ that

kf .t1e1 C � � � C tkek/� f .t1e1/ � � � � � f .tkek/k
� �.k � 1/

�kt1e1k C � � � C ktkekk� � �.k � 1/kK:

Then

kf .x/k D kf .t1e1 C � � � C tkek/k
� �.k � 1/kK C kf .t1e1/k C � � � C kf .tkek/k
� �.k � 1/kK C kM2:

Hence, we have proved that f is bounded on every bounded set in E1. The assertion
of our corollary is now a simple consequence of Theorems 2.14 and 2.15. ut
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G. Isac and Th. M. Rassias [142] established a different generalization of
Theorem 2.5 as follows:

Theorem 2.17 (Isac and Rassias). Let E1 and E2 be a real normed space and a
real Banach space, respectively. Let  W Œ0;1/ ! Œ0;1/ be a function satisfying
the following conditions:

(i) lim
t!1 .t/=t D 0,

(ii)  .ts/ �  .t/ .s/ for all t; s 2 Œ0;1/,
(iii)  .t/ < t for all t > 1.

If a function f W E1 ! E2 satisfies the inequality

kf .x C y/ � f .x/ � f .y/k � �
�
 .kxk/C  .kyk/� (2.14)

for some � � 0 and for all x; y 2 E1, then there exists a unique additive function
A W E1 ! E2 such that

kf .x/ �A.x/k � 2�

2 �  .2/ 
�kxk� (2.15)

for all x 2 E1. Moreover, if f .tx/ is continuous in t for each fixed x, then the
function A is linear.

Proof. We will first prove that

k2�nf .2nx/ � f .x/k � � 
�kxk�

n�1X

mD0

�
 .2/=2

�m
.a/

for any n 2 N and for all x 2 E1. The proof of .a/ follows by induction on n. The
assertion for n D 1 is clear by (2.14). Assume now that .a/ is true for n > 0 and we
want to prove it for the case nC 1. Replacing x with 2x in .a/ we obtain

k2�nf .2n2x/� f .2x/k � � 
�
2kxk�

n�1X

mD0

�
 .2/=2

�m
:

By .ii/ we get

�
�2�nf

�
2nC1x

� � f .2x/�� � � .2/ 
�kxk�

n�1X

mD0

�
 .2/=2

�m
: .b/

Multiplying both sides of .b/ by 1=2 we have

�
�2�n�1f

�
2nC1x

� � .1=2/f .2x/�� � � 
�kxk�

nX

mD1

�
 .2/=2

�m
:
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Using the triangle inequality, we now deduce

�
�2�n�1f

�
2nC1x

� � f .x/��
� ��2�n�1f

�
2nC1x

� � .1=2/f .2x/
��C k.1=2/f .2x/ � f .x/k

� � 
�kxk�

nX

mD1

�
 .2/=2

�m C � 
�kxk�

D � 
�kxk�

nX

mD0

�
 .2/=2

�m
;

which ends the proof of .a/.
Thus, it follows from .a/ that

k2�nf .2nx/ � f .x/k � 2� 
�kxk�

2 �  .2/ .c/

for any n 2 N .
Form > n > 0 we obtain

k2�mf .2mx/ � 2�nf .2nx/k D 2�nk2�.m�n/f .2mx/ � f .2nx/k
D 2�nk2�rf .2ry/ � f .y/k;

where r D m � n and y D 2nx. Hence,

k2�mf .2mx/ � 2�nf .2nx/k � 2�n�
2 
�kyk�

2 �  .2/

� 2�n�
2 .2n/ 

�kxk�

2 �  .2/

�
	
 .2/

2


n
�
2 
�kxk�

2 �  .2/ :

However, by .iii/, the Rassias sequence f2�nf .2nx/g is a Cauchy sequence. Let us
define

A.x/ D lim
n!1 2�nf .2nx/

for all x 2 E1.
We will prove that A is additive. Let x; y 2 E1 be given. It then follows from

(2.14) and .ii/ that

�
�f
�
2n.x C y/

� � f .2nx/ � f .2ny/
�
� � �

�
 
�k2nxk�C  

�k2nyk��

� � .2n/
�
 .kxk/ C  .kyk/�;
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which implies that

2�n��f
�
2n.x C y/

� � f .2nx/ � f .2ny/�� � �
 .2/=2

�n
�
�
 .kxk/ C  .kyk/�:

Using .iii/ and letting n ! 1, we conclude that A is additive.
By letting n ! 1 in .c/, we obtain the inequality (2.15).
Claim thatA is such a unique additive function. Assume that there exists another

one, denoted by A0 W E1 ! E2, satisfying

kf .x/ �A0.x/k � 2� 0

2 �  0.2/
 0�kxk�; .d /

where � 0 .� 0/ is a constant and  0 W Œ0;1/ ! Œ0;1/ is a function satisfying .i/,
.ii/, and .iii/. By (2.15) and .d/, we get

kA.x/ � A0.x/k � kA.x/ � f .x/k C kf .x/ �A0.x/k
� 2�

2 �  .2/
 
�kxk�C 2� 0

2 �  0.2/
 0�kxk�:

Then,

kA.x/ �A0.x/k D .1=n/kA.nx/� A0.nx/k
�  .n/

n

2� 
�kxk�

2 �  .2/
C  0.n/

n

2� 0 0�kxk�

2 �  0.2/
;

for every integer n>1. In view of .i/ and the last inequality, we conclude that
A.x/ D A0.x/ for all x 2 E1.

Because of the additivity of A it follows that A.qx/ D qA.x/ for any q 2 Q.
Using the same argument as in Theorem 2.5, we obtain that A.ax/ D aA.x/ for all
real numbers a. Hence, A is a linear function. ut

G. Isac and Th. M. Rassias [142] remarked that if  .t/ D tp with 0 � p < 1,
then from the last theorem we get the result of Theorem 2.5. If p < 0 and

 .t/ D
�
0 .for t D 0/;

tp .for t > 0/;

then from Theorem 2.17 we obtain a generalization of Theorem 2.5 for p < 0

(ref. [112]). If f .S/ is bounded, where S D ˚
x 2 E1 j kxk D 1

�
, then the A given

in Theorem 2.17 is continuous. Indeed, this is a consequence of the inequalities

kA.x/k � kf .x/k C kA.x/ � f .x/k
� kf .x/k C 2�

2 �  .2/ 
�kxk�

� kf .x/k C 2�

2 �  .2/ .1/

for all x 2 S .
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The control functions H and  appearing in Theorems 2.11 and 2.17 were re-
markably generalized and the Hyers–Ulam–Rassias stability with the generalized
control function was also proved by P. Găvruta. In the following theorem, we will
introduce his result [113].

Theorem 2.18 (Găvruta). LetG andE be an abelian group and a Banach space,
respectively, and let ' W G2 ! Œ0;1/ be a function satisfying

ˆ.x; y/ D
1X

kD0
2�k�1'

�
2kx; 2ky

�
< 1 (2.16)

for all x; y 2 G. If a function f W G ! E satisfies the inequality

kf .x C y/� f .x/ � f .y/k � '.x; y/ (2.17)

for any x; y 2 G, then there exists a unique additive function A W G ! E with

kf .x/ �A.x/k � ˆ.x; x/ (2.18)

for all x 2 G. Moreover, if f .tx/ is continuous in t for each fixed x 2 G, then A is
a linear function.

Proof. Putting y D x in the inequality (2.17) yields

k.1=2/f .2x/� f .x/k � .1=2/'.x; x/ .a/

for all x 2 G. Applying an induction argument to n, we will prove

k2�nf .2nx/ � f .x/k �
n�1X

kD0
2�k�1'

�
2kx; 2kx

�
.b/

for any x 2 G. Indeed,

�
�2�n�1f

�
2nC1x

� � f .x/
�
� � �

�2�n�1f
�
2nC1x

� � .1=2/f .2x/��
C k.1=2/f .2x/� f .x/k;

and by .a/ and .b/, we obtain

�
�2�n�1f

�
2nC1x

� � f .x/
�
�

� .1=2/

n�1X

kD0
2�k�1'

�
2kC1x; 2kC1x

�C .1=2/'.x; x/

D
nX

kD0
2�k�1'

�
2kx; 2kx

�
;

which ends the proof of .b/.
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We will present that the Rassias sequence f2�nf .2nx/g is a Cauchy sequence.
Indeed, for n > m > 0, we have

k2�nf .2nx/ � 2�mf .2mx/k
D 2�mk2�.n�m/f .2n�m2mx/ � f .2mx/k

� 2�m
n�m�1X

kD0
2�k�1'

�
2kCmx; 2kCmx

�

D
n�1X

kDm
2�k�1'

�
2kx; 2kx

�
:

Taking the limit as m ! 1 and considering (2.16), we obtain

lim
m!1 k2�nf .2nx/ � 2�mf .2mx/k D 0:

SinceE is a Banach space, it follows that the sequence f2�nf .2nx/g converges. Let
us denote

A.x/ D lim
n!1 2�nf .2nx/:

It follows from (2.17) that

�
�f
�
2n.x C y/

� � f .2nx/ � f .2ny/�� � '.2nx; 2ny/

for all x; y 2 G. Therefore,

�
�2�nf

�
2n.x C y/

� � 2�nf .2nx/ � 2�nf .2ny/
�
� � 2�n'.2nx; 2ny/: .c/

It follows from (2.16) that

lim
n!1 2�n'.2nx; 2ny/ D 0:

Thus, .c/ implies that A W G ! E is an additive function.
Taking the limit in .b/ as n ! 1, we obtain the inequality (2.18).
It remains to show thatA is uniquely defined. LetA0 WG!E be another additive

function satisfying (2.18). Then, we get

kA.x/ � A0.x/k D k2�nA.2nx/ � 2�nA0.2nx/k
� k2�nA.2nx/ � 2�nf .2nx/k

C k2�nf .2nx/ � 2�nA0.2nx/k
� 2�nˆ.2nx; 2nx/C 2�nˆ.2nx; 2nx/
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D 2�n
1X

kD0
2�k'

�
2kCnx; 2kCnx

�

D
1X

kDn
2�k'

�
2kx; 2kx

�

for all n 2 N . Taking the limit in the above inequality as n ! 1, we get

A.x/ D A0.x/

for all x 2 G.
From the additivity of A it follows that A.qx/ D qA.x/ for any q 2 Q. Using

the same argument as in Theorem 2.5, we obtain that A.ax/ D aA.x/ for all real
numbers a. Hence, A is a linear function. ut

Later, S.-M. Jung complemented Theorem 2.18 by proving a theorem which in-
cludes the following corollary as a special case (see [173, Theorem 4]).

Corollary 2.19. Let E1 and E2 be a real normed space and a Banach space, re-
spectively. Assume that a function ' W E21 ! Œ0;1/ satisfies

ˆ.x; y/ D
1X

kD1
2k'

�
2�kx; 2�ky

�
< 1

for all x; y 2 E1. If a function f W E1 ! E2 satisfies the inequality (2.17) for any
x; y 2 E1, then there exists a unique additive function A W E1 ! E2 such that

kf .x/ �A.x/k � .1=2/ˆ.x; x/

for all x 2 E1.

S.-M. Jung [156] has further generalized the result of Theorem 2.18 by making
use of an idea from the previous theorem. In the following theorem, let G be an
abelian group and E be a Banach space. Consider a function ' W G2 ! Œ0;1/

satisfying '.x; y/ D '.y; x/ for all x; y 2 G. For all n 2 N and all x; y 2 G

define '1n.x; y/ D '.nx; y/ and '2n.x; y/ D '.x; ny/. By a D .a1; a2; : : :/ we
denote a sequence with an 2 f1; 2g for all n 2 N , and we define  a

k
.x; y/ D

'
a1

1 .x; y/ C � � � C '
ak

k
.x; y/ for a fixed integer k > 1. Suppose that there exists a

sequence a D .a1; a2; : : :/ with an 2 f1; 2g for all n 2 N such that

‰k.x; y/ D
1X

nD1
k�n ak�1

�
kn�1x; kn�1y

�
< 1 (2.19)

for all x; y 2 G. With these notations, Jung [156] proved the following theorem.
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Theorem 2.20. Suppose f W G ! E is a function satisfying

kf .x C y/� f .x/ � f .y/k � '.x; y/ (2.20)

for all x; y 2 G. Then there exists a unique additive function A W G ! E such that

kf .x/ � A.x/k � ‰k.x; x/ (2.21)

for all x 2 G. Moreover, if G is a Banach space and f .tx/ is continuous in t for
every fixed x 2 G, then A is linear.

Proof. We first claim

k.1=n/f .nx/ � f .x/k � .1=n/ an�1.x; x/ .a/

for each integer n > 1 and all x 2 G. We verify it by induction on n. By putting
y D x in (2.20), we obtain

kf .2x/ � 2f .x/k � '.x; x/ D  a1 .x; x/:

This implies the validity of .a/ for the case n D 2. Assume now that the inequality
.a/ is valid for n D m .m � 2/, i.e.,

kf .mx/ �mf.x/k �  am�1.x; x/: .b/

For the case n D mC 1, replacing y with mx in (2.20), we get

kf .x Cmx/ � f .x/ � f .mx/k � '.x;mx/ D '.mx; x/: .c/

It follows from .b/ and .c/ that

�
�f
�
.mC 1/x

� � .mC 1/f .x/
�
�

� �
�f
�
.mC 1/x

� � f .x/ � f .mx/
�
�C kf .mx/ �mf.x/k

�  am.x; x/:

Accordingly, the assertion .a/ is true for all integers n > 1 and all x 2 G.
We claim

kk�nf .knx/ � f .x/k �
nX

iD1
k�i ak�1

�
ki�1x; ki�1x

�
.d/

for each n 2 N . We also prove it by induction on n. The validity of .d/ for n D 1

follows from .a/. By assuming the induction argument for n D m and putting n D 1

and then substituting kmx for x in .d/, we obtain
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�
�k�m�1f

�
kmC1x

� � f .x/��
� �
�k�m�1f

�
kmC1x

� � k�mf .kmx/
�
�C kk�mf .kmx/ � f .x/k

� k�mk.1=k/f .k � kmx/ � f .kmx/k C
mX

iD1
k�i ak�1

�
ki�1x; ki�1x

�

� k�m�1 ak�1.k
mx; kmx/C

mX

iD1
k�i ak�1

�
ki�1x; ki�1x

�

D
mC1X

iD1
k�i ak�1

�
ki�1x; ki�1x

�
:

Hence, the inequality .d/ is true for all n 2 N .
We now claim that the Rassias sequence fk�nf .knx/g is a Cauchy sequence.

Indeed, by .d/, we have

kk�nf .knx/ � k�mf .kmx/k
D k�m��k�.n�m/f .kn�m � kmx/ � f .kmx/��

� k�m
n�mX

iD1
k�i ak�1

�
ki�1 � kmx; ki�1 � kmx�

�
1X

iDmC1
k�i ak�1

�
ki�1x; ki�1x

�

for n > m. In view of (2.19), we can make the last term as small as possible by
selecting sufficiently large m. Therefore, the given sequence is a Cauchy sequence.
Since E is a Banach space, the sequence fk�nf .knx/g converges for every x 2 G.
Thus, we may define

A.x/ D lim
n!1k�nf .knx/:

We claim that the function A is additive. By substituting knx and kny for x and
y in (2.20), respectively, we get

��f
�
kn.x C y/

� � f .knx/ � f .kny/
�� � '.knx; kny/: .e/

However, it follows from (2.19) that

lim
n!1 k�n ak�1.k

nx; kny/ D 0:

Therefore, dividing both sides of .e/ by kn and letting n ! 1, we conclude that A
is additive.

According to .d/, the inequality (2.21) holds true for all x 2 G.
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We assert that A is uniquely determined. Let A0 W G ! E be another additive
function with the property (2.21). Since A and A0 are additive functions satisfying
(2.21), we have

kA.x/ � A0.x/k D kk�nA.knx/� k�nA0.knx/k
� k�nkA.knx/� f .knx/k C k�nkf .knx/ �A0.knx/k
� k�n‰k.knx; knx/C k�n‰k.knx; knx/

D 2

1X

mDnC1
k�m ak�1

�
km�1x; km�1x

�
:

In view of (2.19), we can make the last term as small as possible by selecting suffi-
ciently large n. Hence, it follows that A D A0.

Finally, it can also be proved that if G is a Banach space and f .tx/ is continu-
ous in t for every fixed x 2 G, then A is a linear function in the same way as in
Theorem 2.5. ut

It is worthwhile to note that P. Găvruta, M. Hossu, D. Popescu, and C. Căprău
obtained the result of the previous theorem in the papers [118, 119] independently.
Furthermore, Y.-H. Lee and K.-W. Jun generalized Theorem 2.20. Indeed, they
replaced k with a rational number a > 1 in the condition (2.19) and proved
Theorem 2.20 (see [233]).

There are still new valuable results for the Hyers–Ulam–Rassias stability of the
additive Cauchy equation which were not cited above. Among them we have to state
here an outstanding result of G. Isac and Th. M. Rassias [143] without proof:

Let E1 and E2 be a real normed space and a real Banach space, respectively.
Assume that f W E1 ! E2 is a function such that f .tx/ is continuous in t for every
fixed x in E1. Assume that there exist � � 0 and p1; p2 2 R such that p2 � p1 < 1

or 1 < p2 � p1. If f satisfies the inequality

kf .x C y/� f .x/ � f .y/k � �
�kxkp1 C kykp2

�

for all x; y 2 E1, there exists a unique linear function A W E1 ! E2 such that

kf .x/ � A.x/k �
(
�.2� 2p1/�1

�kxkp1 C kxkp2
�

. if p2 � p1 < 1/;

�.2p2 � 2/�1�kxkp1 C kxkp2
�

. if 1 < p2 � p1/

for any x 2 E1.

During the 31st International Symposium on Functional Equations,
Th. M. Rassias [292] raised an open problem whether we can also expect a simi-
lar result for p2 < 1 < p1.

We here remark that J. M. Rassias [280] considered the case where the Cauchy
difference kf .x C y/ � f .x/ � f .y/k in (2.5) is bounded by �kxkpkykp (� � 0,
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0 � p < 1=2) and obtained a similar result to that of Theorem 2.5 except the
bound for the difference kf .x/ � A.x/k in (2.6) bounded by �kxk2p=.2 � 2p/

instead of 2�kxkp=.2 � 2p/. Furthermore, he [281] also proved the Hyers–Ulam–
Rassias stability of the additive Cauchy equation for the case where the norm of the
difference in (2.5) is bounded by �kxkpkykq (� � 0, 0 � p C q < 1) with the
modified approximation bound �kxkpCq=.2� 2pCq/ for kf .x/ �A.x/k in (2.6).

Several mathematicians have remarked interesting applications of the Hyers–
Ulam–Rassias stability theory to various mathematical problems. We will now
present some applications of this theory to the study of nonlinear analysis, espe-
cially in fixed point theory.

In nonlinear analysis it is well-known that finding the expression of the asymp-
totic derivative of a nonlinear operator can be a difficult problem. In this sense, we
will explain how the Hyers–Ulam–Rassias stability theory can be used to evaluate
the asymptotic derivative of some nonlinear operators.

The nonlinear problems considered in this book have been extensively studied by
several mathematicians (cf. [6, 54, 226, 242, 364]). G. Isac and Th. M. Rassias were
the first mathematicians to introduce the use of the Hyers–Ulam–Rassias stability
theory for the study of these problems (see [144]).

LetE be a Banach space. A closed subsetK ofE is said to be a cone if it satisfies
the following properties:

(C1) K CK � K;
(C2) 	K � K for all 	 � 0;
(C3) K \ .�K/ D f0g.

ByK� we denote the dual ofK , i.e.,K� D ˚
� 2 E� j �.x/ � 0 for all x 2 K�.

It is not difficult to see that each cone K � E induces an ordering on E by the
hypothesis that x � y if and only if y � x 2 K . If in E a cone is defined, then
E is called an ordered Banach space. A cone K � E is said to be generating if
E D K � K and it is said to be normal if there exists a ı � 1 such that kxk �
ıkx C yk for all x; y 2 K . We say that a cone K � E is solid if its topological
interior is nonempty. We call a point x0 2 K a quasi-interior point if �.x0/ > 0 for
any nonzero � 2 K�. If the cone K � E is solid, then the quasi-interior points of
K coincide precisely with its interior points.

We denote by L.E;E/ the space of linear bounded operators from E into E .
It is well-known that for every T 2 L.E;E/ the spectral radius r.T / is well de-
fined, where r.T / D max

˚j	j j 	 2 �.T /
�

and �.T / is the spectrum of T . We
say that T 2 L.E;E/ is strictly monotone increasing if for every pair x; y 2 E the
relation x < y (i.e., x � y and x ¤ y) implies T .y/ � T .x/ 2 Kı, where Kı
denotes the interior of K .

Let D � E be a bounded set. We define �.D/, the measure of noncompactness
of D, to be the minimum of all positive numbers ı such that D can be cov-
ered by finitely many sets of diameter less than ı. A function f WE!E is said
to be a k-set-contraction if it is continuous and there exists a k � 0 such that
�
�
f .D/

�� k�.D/ for every bounded subset D of the domain of f . A function
f WE!E is said to be a strict-set-contraction if it is a k-set-contraction for some
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k < 1. A function f W E ! E is called compact if it maps bounded subsets of the
domain of f onto relatively compact subsets of E and f is said to be completely
continuous if it is continuous and compact. Every completely continuous function
is a strict-set-contraction.

Let K be a generating (or total, i.e., E D K �K ) cone in E . The function
f W K ! E is said to be asymptotically differentiable along K if there exists a
T 2 L.E;E/ such that

lim
x 2 K

kxk ! 1
kf .x/ � T .x/k=kxk D 0:

In this case, T is the unique function and we call it the derivative at infinity along
K of f . We say that a function f W E ! E is asymptotically close to zero along
K if

lim
x 2 K

kxk ! 1
kf .x/k=kxk D 0:

Let � W Œ0;1/ ! Œ0;1/ be a function such that �.t/ > 0 for all t � � , where
� � 0. We say that f W K ! E is �-asymptotically bounded along K if there
exist b; c > 0 such that for all x 2 K , with kxk � b, we have kf .x/k � c�

�kxk�.
Every �-asymptotically bounded function (along K) such that lim

t!1�.t/=t D 0 is

asymptotically close to zero.
If K is a generating (or total) cone in E , then a function f W K ! E is said to

be differentiable at x0 2 K alongK if there exists f 0.x0/ 2 L.E;E/ such that

lim
x 2 K
x ! 0

kf .x0 C x/ � f .x0/ � f 0.x0/xk=kxk D 0:

In this case, f 0.x0/ is the derivative at x0 along K of f and it is uniquely deter-
mined.

To enlarge the class of the functions  such that the condition of Theorem 2.17
remains valid, we consider the following: Let F be the set of all functions  W
Œ0;1/ ! Œ0;1/ satisfying the conditions .i/, .ii/, and .iii/ in Theorem 2.17. Let
P.‰/ be the convex cone generated by the set F . We remark that a function  2
P.‰/ satisfies the condition .i/ but generally does not satisfy the conditions .ii/
and .iii/ in Theorem 2.17. However, G. Isac and Th. M. Rassias [144] presented
that Theorem 2.17 remains valid for each  2 P.‰/.
Theorem 2.21. Let E1 be a real normed space, E2 a real Banach space, and
f W E1 ! E2 a continuous function. Let  2 P.‰/ be given. If f satisfies the
inequality (2.14) for some � � 0 and for all x; y 2 E1, then there exists a unique
linear function T W E1 ! E2 satisfying the inequality (2.15) for all x 2 E1.
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Proof. We apply Theorem 2.18 for the function

'.x; y/ D �
�
 .kxk/ C  .kyk/�:

In this case, using the properties of the functions  2 P.‰/, we can show that
ˆ.x; y/ < 1 for all x; y 2 E1, and the conclusion of our theorem follows. ut

The last theorem is significant because the class of functions satisfying (2.14)
with  2 P.‰/ is strictly larger than the class of functions defined in Theorem
2.17. G. Isac and Th. M. Rassias [144] also proved the following theorem:

Theorem 2.22. Let E be a Banach space ordered by a generating cone K and let
f W E ! E , g W K ! K be functions such that:

(f1) f is completely continuous, positive, and satisfies the inequality (2.14) for
some  2 P.‰/ and � > 0 .i.e., f .K/ � K/;

(f2) there exist a quasi-interior point x0 2 K and 0 < 	0 < 1 such that
lim
n!12

�nf .2nx0/ � 	0x0;

(g1) g is asymptotically close to zero alongK;
(h1) h D f C g is a strict-set-contraction from K to K .

Then h D f C g has a fixed point in K .

Proof. Let S D ˚
x 2 E j kxk D 1

�
. By assumption .f 1/ and Theorem 2.21, we

have that T .x/ D lim
n!12

�nf .2nx/ is well defined for every x 2 E and T is the

unique linear operator satisfying the inequality

kf .x/ � T .x/k � 2�

2 �  .2/
 
�kxk� .a/

for all x 2 E . Since f is compact, we have that f .S/ is bounded, which implies
that T is continuous. Indeed, the continuity of T is a consequence of the following
inequalities:

kT .x/k � kf .x/k C kT .x/ � f .x/k
� kf .x/k C 2�

2 �  .2/ 
�kxk�

� kf .x/k C 2�

2 �  .2/ .1/

for all x 2 S .
From the definition of T and the fact that f .K/ � K , we deduce that T is

positive (i.e., T .K/ � K). From .a/ and the properties of  , it follows that

lim
x 2 K

kxk ! 1
kf .x/ � T .x/k=kxk D 0;
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i.e., T is the asymptotic derivative of f along K . In addition, from the principal
theorem of [141] or [6], T is completely continuous (and it is also a strict-set-
contraction). From (g1) we have

lim
x 2 K

kxk ! 1
kh.x/ � T .x/k=kxk

� lim
x 2 K

kxk ! 1
kg.x/k=kxk C lim

x 2 K
kxk ! 1

kf .x/ � T .x/k=kxk

D 0;

i.e., T is also the asymptotic derivative of h alongK .
Since T is completely continuous, its spectrum consists of eigenvalues and zero.

Suppose that r.T / > 0. From (f 2) we have that T .x0/ � 	0x0 and using the
Krein–Rutman theorem ([364, Proposition 7.26]) we have that there exists �0 2
K� nf0g such that T �.�0/ D r.T /�0 and �0.x0/ > 0 (since x0 is a quasi-interior
point of K), where we denote by T � the adjoint of T . Hence, we deduce

r.T / D
�
T �.�0/

�
.x0/

�0.x0/
D �0

�
T .x0/

�

�0.x0/
� �0.	0x0/

�0.x0/
D 	0;

i.e., r.T / < 1.
Now, all the assumptions of [6, Theorem 1] are satisfied and hence h D f C g

has a fixed point in K . ut
Corollary 2.23. Let E be a Banach space ordered by a generating cone K and let
f W E ! E be a function satisfying the conditions .f1/ and .f2/. Then f has a fixed
point in K .

In Theorem 2.22 and Corollary 2.23 we can replace (f 2) with the following
condition:

(f3) kf .x/ � 	xk > 2��2 �  .2/��1 �kxk� for all 	 � 1 and x 2 Knf0g.

G. Isac and Th. M. Rassias [144] investigated the existence of nonzero positive
fixed points. We will express the result of G. Isac and Th. M. Rassias in the following
theorem.

Theorem 2.24. Let E be a Banach space ordered by a generating cone K and let
f W E ! E , g W K ! K be functions satisfying .f1/, .g1/, .h1/, and:

(f4) there exist 	0 > 1 and x0 62�K such that lim
n!12

�nf .2nx0/ � 	0x0;

(f5) kf .x/ � xk > 2��2 �  .2/��1 �kxk� for all x 2 Knf0g;
(h2) h is differentiable at 0 alongK and h.0/ D 0;
(h3) h0.0/ does not have a positive eigenvector belonging to an eigenvalue 	 � 1.

Then h D f C g has a fixed point in Knf0g.
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Proof. As in the proof of Theorem 2.22, h is asymptotically differentiable along
K and its derivative at infinity along K is T .x/ D lim

n!12
�nf .2nx/ for each

x 2E . Moreover, T is completely continuous and the inequality .a/ in the proof of
Theorem 2.22 is also satisfied. It follows from (f 5) that 1 is not an eigenvalue with
corresponding positive eigenvector of T . From (f 4) we obtain r.T / � 	0. Indeed,
if r.T / < 	0 and since r.T / D lim

n!1kT nk1=n (Gelfand’s formula), 	�n
0 kT nk � kn

for sufficiently large n and some k < 1. From the fact that T .x0/ � 	0x0 we deduce
	�n
0 T n.x0/ � x0 (since T is positive) and if we pass to the limit in the last relation,

we obtain x0 � 0, i.e., x0 2�K , which is a contradiction. Using the Krein–Rutman
theorem again, we have that r.T / is an eigenvalue of T with an eigenvector in K .
Thus, all the assumptions of [54, Theorem 1] are satisfied and we conclude that h
has a fixed point in Knf0g. ut

Let E be a Banach space ordered by a cone K , and let L;A W E ! E be
functions. We say that 	 > 0 is an asymptotic characteristic value of .L;A/ if L
and 	A are asymptotically equivalent (with respect to K), i.e.,

lim
x 2 K

kxk ! 0

kL.x/ � 	A.x/k=kxk D 0:

An asymptotic characteristic value of .L;A/ is a characteristic value of .L;A/ in
the sense of the definition provided by M. Mininni in [242], i.e., 	 is a characteristic
value of .L;A/ in Mininni’s sense, if there exists a sequence fxng of elements ofK
such that

lim
n!1 kxnk D 1 and lim

n!1 kL.xn/� 	A.xn/k=kxnk D 0:

The following result is a consequence of Theorem 2.24.

Corollary 2.25. Let E be a Banach space ordered by a generating coneK .� E/,
let f W E ! E be a function such that f .K/ � K , and let L;A W E ! E be
functions. Assume that the following conditions are satisfied:

(i) f satisfies the conditions .f1/, .f4/, and .f5/;
(ii) 	 is an asymptotic characteristic value of .L;A/;

(iii) h D f C L � 	A satisfies the conditions .h1/, .h2/, and .h3/.

Then the nonlinear eigenvalue problem, L.x�/C f .x�/ D x� C 	A.x�/ with un-
knowns x� 2 Enf0g and 	 > 0, has a solution.

It is well-known that the study of the nonlinear integral equation

x.u/ D
Z

�

G.u; �/f
�
�; x.�/

�
d�; .˛/

known as the Hammerstein equation, is of central importance in the study of several
boundary-value problems (cf. [226, 364]).
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In addition, some special interest is focused on the eigenvalue problem

x.u/ D 	

Z

�

G.u; �/f
�
�; x.�/

�
d�: .ˇ/

If we denote by G the linear integral operator defined by the kernel G.u; �/ and
by f the Nemyckii’s nonlinear operator defined by f .�; x.�//, i.e., f .u/.�/ D
f .�; x.�//, then the equation .ˇ/ takes the abstract form

x D 	Gf .x/: .�/

For the equation .�/ we consider the following hypotheses:

(H1) .E;K/ and .F; P / are real ordered Banach spaces. The cone K is normal
with nonempty interior.

(H2) The function f W E ! F is continuous and the operator G W F ! E is
linear, compact, and positive.

(H3) G is strongly positive, i.e., x < y implies G.y/ �G.x/ 2 Kı.

We recall that .	�;C1/ is a bifurcation from infinity of equation .˛/ if 	� > 0
and there is a sequence of solutions .	n; xn/ of .�/ such that 	n ! 	� and kxnk !
1 as n ! 1.

Isac and Rassias [144] also contributed to the following theorem.

Theorem 2.26. Consider equation .�/ and suppose that .H1/, .H2/, and .H3/ are
satisfied. In addition, assume that the function f W E ! F satisfies the following
conditions:

(i) f .K/ � K and f .S/ is bounded, where S D ˚
x 2 E j kxk D 1

�
;

(ii) f satisfies the inequality (2.14) for some � � 0,  2 P.‰/, and for all
x; y 2E;

(iii) lim
n!12

�nf .2nx/ > 0 for all x 2 Knf0g.

If we set T .x/ D lim
n!12

�nf .2nx/, for all x 2 E , and 	� D r.GT /�1, then

.	�;C1/ is the only bifurcation from infinity of equation .�/.

Proof. First, we note that T is the asymptotic derivative of f along K . Since by
assumption .iii/ we see that T is strictly positive onK , we remark that r.GT / > 0.
We set

g.x/ D
� kx2kf �x=kxk� .for x ¤ 0/;

0 .for x D 0/:

We know that g0.0/ D T and .	;C1/ is a bifurcation point of x D 	Gf .x/ if and
only if .	; 0/ is a bifurcation point of x D 	Gg.x/. Our theorem now follows from
a theorem of [364]. ut

Concerning Theorem 2.26, the two-sided estimates for the spectral radius ob-
tained by V. Y. Stetsenko [337] are very essential. Stetsenko presented that if
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A W E ! E is a completely continuous operator and E is a Banach space or-
dered by a generating closed cone K with quasi-interior points and if some special
assumptions are satisfied, then we can define the numbers 	0, �, the vectors u0, �0,
and a functional �0 such that

	0 � �
�0.�0/

�0.u0/
� r.A/ � 	0 � 1

�

�0.�0/

�0.u0/
: .ı/

G. Isac and Th. M. Rassias [144] raised an interesting problem to find new and
more efficient two-sided estimates for the spectral radius of the operatorGT with

T .x/ D lim
n!1 2�nf .2nx/

when f satisfies the inequality (2.14) for some � � 0,  2 P.‰/, and for all
x; y 2 E .

Such an estimate of r.GT /, similar to the estimate .ı/, is important for the ap-
proximation of the bifurcation point .	�;C1/ of the equation .�/.

2.4 Stability on a Restricted Domain

In previous sections, we have seen that the condition that a function f satisfies one
of the inequalities (2.2), (2.5), (2.10), (2.14), (2.17), and (2.20) on the whole space,
assures us of the existence of a unique additive function approximating f within a
given distance.

It will also be interesting to study the stability problems of the additive Cauchy
equation on a restricted domain. More precisely, we will study whether there exists a
true additive function near a function satisfying one of those inequalities mentioned
above only in a restricted domain.

F. Skof [330] and Z. Kominek [224] studied this question in the case of functions
defined on certain subsets of RN with values in a Banach space. First, we will intro-
duce a lemma by Skof [330] which is necessary to prove the following propositions.

Lemma 2.27. Let E be a Banach space. If a function f W Œ0;1/ ! E satisfies

kf .x C y/ � f .x/ � f .y/k � ı

for some ı � 0 and for all x; y � 0, then there exists a unique additive function
A W R ! E such that

kf .x/ �A.x/k � ı

for any x � 0.
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Proof. Define a function g W R ! E by

g.x/ D
�
f .x/ .for x � 0/;

�f .�x/ .for x < 0/:

It is not difficult to see that

kg.x C y/ � g.x/ � g.y/k � ı

for all x; y 2 R. Therefore, by Theorem 2.3, there exists a unique additive function
A W R ! E such that

kg.x/ �A.x/k � ı .a/

for any x 2 R. This function A is the unique additive function which satisfies .a/
for any x � 0. ut

F. Skof [330] proved the following lemma for N D 1, and Z. Kominek [224]
extended it for any positive integer N .

Lemma 2.28. LetE be a Banach space and letN be a given positive integer. Given
c > 0, let a function f W Œ0; c/N ! E satisfy the inequality

kf .x C y/ � f .x/ � f .y/k � ı (2.22)

for some ı � 0 and for all x; y 2 Œ0; c/N with x C y 2 Œ0; c/N . Then there exists
an additive function A W RN ! E such that

kf .x/ �A.x/k � .4N � 1/ı

for any x 2 Œ0; c/N .

Proof. First, we consider the case N D 1. We extend the function f to Œ0;1/

and then make use of Lemma 2.27 above. Let us represent an arbitrary x � 0 by
x D .1=2/nc C �, where n is a nonnegative integer and 0 � � < .1=2/c. Define a
function g W Œ0;1/ ! E by

g.x/ D f .�/C nf
�
.1=2/c

�
:

On the interval Œ0; c/ we have

kg.x/ � f .x/k � ı: .a/

In fact, when 0 � x < .1=2/c, we have g.x/ D f .x/. When .1=2/c � x < c,
we get

kg.x/ � f .x/k D �
�f .�/C f

�
.1=2/c

�� f
�
.1=2/c C �

��� � ı;

since f satisfies (2.22).
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We will now show that g satisfies

kg.x C y/ � g.x/ � g.y/k � 2ı .b/

for all x; y � 0. For given x; y � 0, let x D .1=2/nc C � and y D .1=2/mc C
!, where n and m are nonnegative integers and � and ! belong to the interval
Œ0; .1=2/c/. Assume �C ! 2 Œ0; .1=2/c/. Then

kg.x C y/ � g.x/ � g.y/k
D �
�f .�C !/C .mC n/f

�
.1=2/c

�� f .�/

� nf
�
.1=2/c

�� f .!/ �mf �.1=2/c���
D kf .�C !/� f .�/ � f .!/k
� ı:

Assume now that �C ! 2 Œ.1=2/c; c/. Put �C ! D .1=2/c C t . Then, by .a/, we
have

kg.x C y/ � g.x/ � g.y/k
D �
�f
�
.1=2/c

�C f .t/ � f .�/ � f .!/��
D kg.�C !/� f .�C !/C f .�C !/� f .�/ � f .!/k
� 2ı:

According to Lemma 2.27, .b/ implies that there exists a unique additive function
A W R ! E such that

kg.x/ �A.x/k � 2ı .c/

for any x � 0. Therefore, by .a/ and .c/, we have

kf .x/ � A.x/k � kf .x/ � g.x/k C kg.x/ � A.x/k � 3ı

for all x 2 Œ0; c/, which completes the proof for N D 1.
Assume now that N > 1. If we define the functions fi W Œ0; c/ ! E for i 2

f1; : : : ; N g by
fi .xi / D f .0; : : : ; 0; xi ; 0; : : : ; 0/;

then the functions fi satisfy

kfi .xi C yi / � fi .xi /� fi .yi /k � ı

for all xi ; yi 2 Œ0; c/with xiCyi 2 Œ0; c/. Thus, the first part of this proof guarantees
the existence of additive functions Ai W R ! E such that

kfi .xi /� Ai .xi /k � 3ı .d/

for all xi 2 Œ0; c/.
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Representing x 2 RN in the form .x1; : : : ; xN / we see that the function A W
RN ! E given by

A.x/ D
NX

iD1
Ai .xi /

is an additive function. Moreover, for each x 2 Œ0; c/N , by .d/ and (2.22), we get

kf .x/ � A.x/k

�
�
�
��
�
f .x/ �

NX

iD1
fi .xi /

�
�
��
�

C
NX

iD1
kfi .xi /� Ai .xi /k

�
�
��
�
�
f .x1; : : : ; xN�1; 0/�

N�1X

iD1
fi .xi /

�
��
�
�

C k � f .0; : : : ; 0; xN / � f .x1; : : : ; xN�1; 0/C f .x/k C 3Nı

�
�
�
�
��
f .x1; : : : ; xN�1; 0/�

N�1X

iD1
fi .xi /

�
�
�
��

C ı C 3Nı

� � � �
� .N � 1/ı C 3Nı:

This ends the proof. ut
Lemma 2.29. Let E be a Banach space and let N be a positive integer. Given
c > 0, let a function f W .�c; c/N ! E satisfy the inequality (2.22) for some ı � 0

and for all x; y 2 .�c; c/N with x C y 2 .�c; c/N . Then there exists an additive
function A W RN ! E such that

kf .x/ �A.x/k � .5N � 1/ı

for any x 2 .�c; c/N .

Proof. First, we prove the assertion for N D 1. Put

g.x/ D .1=2/
�
f .x/ � f .�x/� and h.x/ D .1=2/

�
f .x/C f .�x/�

for all x 2 .�c; c/. We note that

kh.x/k � ı .a/

for x 2 .�c; c/ and

kg.x C y/ � g.x/ � g.y/k � ı

for all x; y 2 .�c; c/ with x C y 2 .�c; c/. According to Lemma 2.28, there exists
an additive function A W R ! E such that kg.x/ �A.x/k � 3ı for each x 2 Œ0; c/.
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Since g and A are odd, kg.x/�A.x/k � 3ı holds true for any x 2 .�c; c/. Hence,
by .a/, we get

kf .x/ � A.x/k � kh.x/k C kg.x/ �A.x/k � 4ı

for all x 2 .�c; c/. This completes the proof for the case N D 1.
Assume now that N > 1. The proof runs in the same way as in the proof of

Lemma 2.28. We define functions fi W .�c; c/ ! E by

fi .xi / D f .0; : : : ; 0; xi ; 0; : : : ; 0/

for i 2 f1; : : : ; N g. Then, the functions fi satisfy

kfi .xi C yi / � fi .xi /� fi .yi /k � ı

for all xi ; yi 2 .�c; c/ with xi C yi 2 .�c; c/. Thus, the first part of our proof
implies that there exist additive functions Ai W R ! E such that

kfi .xi / �Ai .xi /k � 4ı .b/

for xi 2 .�c; c/.
Expressing x 2 RN in the form .x1; : : : ; xN /we see that the functionA W RN !

E defined by

A.x/ D
NX

iD1
Ai .xi /

is additive. Let x 2 .�c; c/N be given. Then, by .b/ and (2.22), we have

kf .x/ � A.x/k �
�
�
�
��
f .x/ �

NX

iD1
fi .xi /

�
�
�
��

C
NX

iD1
kfi .xi /� Ai .xi /k

� kf .x/ � f .0; : : : ; 0; xN / � f .x1; : : : ; xN�1; 0/k

C
�
�
�
��
f .x1; : : : ; xN�1; 0/�

N�1X

iD1
fi .xi /

�
�
�
��

C 4Nı

�
�
�
�
��
f .x1; : : : ; xN�1; 0/�

N�1X

iD1
fi .xi /

�
�
�
��

C ı C 4Nı

� � � �
� .N � 1/ı C 4Nı;

which ends the proof. ut
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Using Corollary 2.23, Z. Kominek [224] proved a more generalized theorem con-
cerning the stability of the additive Cauchy equation on a restricted domain.

Theorem 2.30 (Kominek). Let E be a Banach space and letN be a positive inte-
ger. Suppose D is a bounded subset of RN containing zero in its interior. Assume,
moreover, that there exist a nonnegative integer n and a positive number c > 0 such
that

(i) .1=2/D � D,
(ii) .�c; c/N � D,

(iii) D � .�2nc; 2nc/N .

If a function f W D ! E satisfies the functional inequality

kf .x C y/ � f .x/ � f .y/k � ı (2.23)

for some ı � 0 and for all x; y 2 D with x C y 2 D, then there exists an additive
function A W RN ! E such that

kf .x/ � A.x/k � .2n � 5N � 1/ı

for any x 2 D.

Proof. On account of Lemma 2.29, there exists an additive function A W RN ! E

such that

kf .x/ �A.x/k � .5N � 1/ı .a/

for any x 2 .�c; c/N . Taking an arbitrary x 2 D we observe, by .i/, that 2�kx 2 D
for k 2 f1; : : : ; ng, and condition .iii/ implies that 2�nx 2 .�c; c/N . It follows from
(2.23) that for every x 2 D and each k 2 f1; : : : ; ng

�
�2k�1f

�
2�kC1x

� � 2kf �2�kx
��� � 2k�1ı;

therefore,
kf .x/ � 2nf .2�nx/k � .2n � 1/ı: .b/

Now, by .a/, .b/, and the additivity of A, we get

kf .x/ � A.x/k � kf .x/ � 2nf .2�nx/k
C k2nf .2�nx/ � 2nA.2�nx/k

� .2n � 1/ı C 2n.5N � 1/ı
D .2n � 5N � 1/ı

for any x 2 D, which ends the proof. ut
L. Losonczi [238] proved the following theorem and applied it to the study of the

Hyers–Ulam stability for Hosszú’s equation (see Theorem 4.5).
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Theorem 2.31. Let E1 and E2 be a normed space and a Banach space, respec-
tively. Suppose a function f W E1 ! E2 satisfies the inequality

kf .x C y/ � f .x/ � f .y/k � ı (2.24)

for some ı � 0 and for all .x; y/ 2 E21 nB , where B is a subset of E21 such that
the first .or second/ coordinates of the points of B form a bounded set. Then there
exists a unique additive function A W E1 ! E2 such that

kf .x/ �A.x/k � 5ı (2.25)

for any x 2 E1.

Proof. Since the left-hand side of (2.24) is symmetric in x and y, we may assume
that (2.24) holds true for all .x; y/ 2 C D .E21 nB/ [ .E21 nBs/, where Bs D˚
.x; y/ 2 E21 j .y; x/ 2 B�. Since

C D �
E21 nB� [ �

E21 nBs
� D E21 n.B \ Bs/

and both coordinates of the points from B \ Bs form a bounded set, we can find a
number a > 0 such that B \ Bs � Q, where

Q D ˚
.x; y/ 2 E21 j kxk < a; kyk < a�:

Choose a t 2 E1 such that ktk D 2a and take any point .u; v/ 2 B \ Bs . We
then know that all the points

�
u C v; 2t � .u C v/

�
; .u; t � u/; .t � v; v/; .t � u; t � v/; .t; t/ .a/

are in E21 nQ and hence also in E21 n.B \ Bs/, since the inequalities

k2t � .u C v/k � k2tk � ku C vk � 4a � 2a > a;

kt � uk � ktk � kuk � a;

kt � vk � ktk � kvk � a;

ktk > a

are true. Thus, if .u; v/ 2 B \ Bs , we get

kf .u C v/� f .u/� f .v/k
� kf .u C v/C f .2t � .u C v// � f .2t/k

C k � f .2t � .u C v//C f .t � u/C f .t � v/k
C k � f .t � u/� f .u/C f .t/k
C k � f .v/ � f .t � v/C f .t/k
C k � f .t/ � f .t/C f .2t/k

� 5ı;

where we applied (2.24) for each of the points listed in .a/.
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If .u; v/ 2 E21 n.B \ Bs/, then we obtain

kf .u C v/� f .u/ � f .v/k � ı

as we have already seen. Hence, the inequality

kf .x C y/ � f .x/ � f .y/k � 5ı

holds true for all x; y 2 E1. According to Theorem 2.3, there exists a unique ad-
ditive function A W E1 ! E2 such that the inequality (2.25) is true for all x 2 E1
because the assertion of Theorem 2.3 also holds true for the case when the do-
main E1 of the function f is extended to an amenable semigroup and because each
normed space is an amenable semigroup (see Corollary 2.42 below). ut

F. Skof [331] proved the following theorem and applied the result to the study of
an asymptotic behavior of additive functions.

Theorem 2.32 (Skof). LetE be a Banach space, and let a > 0 be a given constant.
Suppose a function f W R ! E satisfies the inequality

kf .x C y/ � f .x/ � f .y/k � ı (2.26)

for some ı � 0 and for all x; y 2 R with jxj C jyj > a. Then there exists a unique
additive function A W R ! E such that

kf .x/ �A.x/k � 9ı (2.27)

for all x 2 R.

Proof. Put

'.x; y/ D f .x C y/� f .x/ � f .y/

for x; y 2 R. Suppose real numbers x and y ¤ 0 are given. Letm and n be integers
greater than 1. We then have

f .nx Cmy/ D f .nx/C f .my/C '.nx;my/

and

f .nx Cmy/ D f
�
.n � 1/x C .x Cmy/

�

D f
�
.n � 1/x

�C f .x/C f .my/

C '.x;my/C '
�
.n � 1/x; x Cmy

�
;
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from which it follows that

f .nx/ � f
�
.n � 1/x

� � f .x/
D '.x;my/C '

�
.n � 1/x; x Cmy

�� '.nx;my/:

If m is so large that m >
�
a C jxj�=jyj, the last equality implies

�
�f .nx/ � f

�
.n � 1/x

�� f .x/
�
� � 3ı .a/

for any x 2 R and any integer n > 1. The relation

f .nx/ � nf .x/ D
nX

kD2

�
f .kx/ � f ..k � 1/x/ � f .x/�;

together with .a/, yields

kf .nx/ � nf .x/k � 3.n� 1/ı .b/

for any real number x and n > 1. Obviously, it follows from .b/ that

k'.nx; ny/ � n'.x; y/k � kf .nx C ny/ � nf .x C y/k
C kf .nx/ � nf .x/k C kf .ny/ � nf .y/k

� 9.n� 1/ı

for all real numbers x and y with .x; y/ ¤ .0; 0/. Dividing both sides of the last
inequality by n, then letting n ! 1 and considering the fact that .1=n/'.nx; ny/
! 0 as n ! 1, we get

k'.x; y/k � 9ı .c/

for all x; y with .x; y/ ¤ .0; 0/. Let x be a real number with jxj > a. Then, the
inequality (2.26) with such an x and y D 0 yields kf .0/k � ı. Hence, we obtain
k'.0; 0/k D kf .0/k � ı. Therefore, .c/ holds true for all x; y 2 R.

According to Theorem 2.3, there is a unique additive function A W R ! E such
that the inequality (2.27) holds true for any x in R. ut

Analogously, we can easily generalize the last result. More precisely, we can
extend the domain of the function f in the last theorem to an arbitrary normed
space. Here, we remark that the domain E1 of the function f in Theorem 2.3 can
be extended to a normed space without reduction of the validity of the theorem. The
proof of the following theorem given by F. Skof [331] is the same as that of the last
theorem.

Theorem 2.33. Let E1 and E2 be a normed space and a Banach space, respec-
tively. Given a > 0, suppose a function f W E1 ! E2 satisfies

kf .x C y/ � f .x/ � f .y/k � ı
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for some ı � 0 and for all x; y 2 E1 with kxk C kyk > a. Then there exists a
unique additive function A W E1 ! E2 such that

kf .x/ �A.x/k � 9ı

for all x 2 E1.

Using this theorem, F. Skof [331] has studied an interesting asymptotic behavior
of additive functions as we see in the following theorem.

Theorem 2.34 (Skof). Let E1 and E2 be a normed space and a Banach space,
respectively. Suppose z is a fixed point of E1. For a function f W E1 ! E2 the
following two conditions are equivalent:

(i) f .x C y/ � f .x/ � f .y/ ! z as kxk C kyk ! 1;
(ii) f .x C y/ � f .x/ � f .y/ D z for all x; y 2 E1.

Proof. It suffices to prove the implication .i/) .ii/ only because the reverse impli-
cation is a trivial case. Define g.x/ D f .x/C z for all x 2 E1. Then the condition
.i/ implies that

g.x C y/ � g.x/ � g.y/ ! 0 as kxk C kyk ! 1: .a/

Due to .a/ there is a sequence fıng monotonically decreasing to zero such that

kg.x C y/ � g.x/ � g.y/k � ın

for all x; y 2 E1 with kxk C kyk > n. According to Theorem 2.33, there exists a
unique additive function An W E1 ! E2 satisfying

kg.x/ � An.x/k � 9ın .b/

for all x 2 E1. Let m and n be integers with n > m > 0. Then the additive
function An W E1 ! E2 satisfies kg.x/ � An.x/k � 9ım for all x 2 E1. The
uniqueness argument implies An D Am for all integers n greater than m > 0.
Therefore, A1 D A2 D : : : D An D : : :. If we define a function A W E1 ! E2 by
A.x/ D An.x/ for all x 2 E1 and for some n > 1, then A is an additive function.
Letting n ! 1 in .b/, we conclude that g itself is an additive function. Thus,

0 D g.x C y/ � g.x/ � g.y/ D f .x C y/� f .x/ � f .y/ � z

for all x; y 2 E1. ut
The following corollary is an immediate consequence of the last theorem (see

[331]).
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Corollary 2.35. The function f W R ! R is an additive function if and only if
f .x C y/ � f .x/ � f .y/ ! 0 as jxj C jyj ! 1.

Skof [334] dealt with functionals on a real Banach space and proved a theorem
concerning the stability of the alternative equation jf .x C y/j D jf .x/C f .y/j:

Let E be a real Banach space, and let M be a given positive number. If a func-
tional f W E ! R satisfies the inequality

ˇ
ˇjf .x C y/j � jf .x/C f .y/jˇˇ � ı

for some ı � 0 and for all x; y 2 E with kxk C kyk > M , then there exists a
unique additive functionalA W E ! R such that

jf .x/ � A.x/j � 40ıC 11jf .0/j C 11max
˚
ı; jf .0/j�

for all x 2 E .

On the basis of this result, Skof could obtain the following characterization of
additive functionals (see [334]):

Let E be a real Banach space. The functional f W E ! R is additive if and only
if f .0/ D 0 and jf .x C y/j � jf .x/C f .y/j ! 0 as kxk C kyk ! 1.

D. H. Hyers, G. Isac, and Th. M. Rassias [136] have proved a Hyers–Ulam–
Rassias stability result of the additive Cauchy equation on a restricted domain and
applied it to the study of the asymptotic derivability which is very important in
nonlinear analysis.

Theorem 2.36 (Hyers, Isac, and Rassias). Given a real normed space E1 and a
real Banach space E2, let numbers M > 0, � > 0, and p with 0 < p < 1 be
chosen. Let a function f W E1 ! E2 satisfy the inequality

kf .x C y/� f .x/ � f .y/k � �
�kxkp C kykp� (2.28)

for all x; y 2 E1 satisfying kxkp C kykp > M p. Then there exists an additive
function A W E1 ! E2 such that

kf .x/ � A.x/k � 2�
�
2 � 2p

��1kxkp (2.29)

for all x 2 E1 with kxk > 2�1=pM .

Proof. When kxk > 2�1=pM or 2kxkp > M p, we may put y D x in (2.28) to
obtain

k.1=2/f .2x/� f .x/k � �kxkp : .a/
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Since k2xk is also greater than 2�1=pM , we can replace x with 2x in .a/. Thus,
we can use the induction argument given in Theorem 2.5 to obtain the inequality

k2�nf .2nx/ � f .x/k � 2�
�
2 � 2p��1kxkp .b/

for all x 2 E1 with kxk > 2�1=pM and for any n 2 N . Hence, the limit

g.x/ D lim
n!1 2�nf .2nx/ .c/

exists when kxk > 2�1=pM . Therefore,

kg.x/ � f .x/k � 2�
�
2 � 2p��1kxkp : .d /

Clearly, when kxk > 2�1=pM , we have

g.2x/ D lim
n!1 2�nf

�
2nC1x

� D 2 lim
n!1 2�n�1f

�
2nC1x

�
;

so that

g.2x/ D 2g.x/ .e/

for kxk > 2�1=pM .
Assume now that kxk, kyk, and kx C yk are all greater than 2�1=pM . Then, by

(2.28), we find that

�
�2�nf

�
2n.x C y/

� � 2�nf .2nx/ � 2�nf .2ny/
�
� � �2�n.1�p/�kxkp C kykp�

for all n 2 N . It then follows from .c/ that

g.x C y/ D g.x/C g.y/

for all x; y 2 E1 with kxk; kyk; kx C yk > 2�1=pM . Using an extension theorem
of F. Skof [334], we will define a function A W E1 ! E2 to be an extension of the
function g to the whole space E1. Given any x 2 E1 with 0 < kxk � 2�1=pM , let
k D k.x/ denote the largest integer such that

2�1=pM < 2kkxk � M: .f /

Now, define a function A W E1 ! E2 by

A.x/ D

8
ˆ̂
<

ˆ̂:

0 .for x D 0/;

2�kg
�
2kx

�
.for 0 < kxk � 2�1=pM; where k D k.x//;

g.x/ .for kxk > 2�1=pM/:
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If we take x 2 E1 with 0 < kxk � 2�1=pM , then k � 1 is the largest integer
satisfying

2�1=pM <
�
�2k�1.2x/

�
� � M;

and we have

A.2x/ D 2�.k�1/g
�
2k�12x

� D 2�k � 2g�2kx� D 2A.x/

for 0 < kxk � 2�1=pM . From the definition of A and .e/, it follows that A.2x/ D
2A.x/ for all x 2 E1. Given x 2 E1 with x ¤ 0, choose a positive integer m so
large that k2mxk > 2�1=pM . By the definition of A, we have

A.x/ D 2�mA.2mx/ D 2�mg.2mx/;

and by .c/ this implies that

A.x/ D lim
n!1 2�.mCn/f .2mCnx/;

which demonstrates
A.x/ D lim

s!1 2�sf .2sx/ .g/

for x ¤ 0. Since A.0/ D 0, .g/ holds true for all x 2 E1.
We will now present that

A.�x/ D �A.x/ .h/

for all x 2 E1. It is obvious for x D 0. Take any x 2 E1nf0g and choose an integer
n so large that k2nxk > 2�1=pM . If we replace x and y in (2.28) with 2nx and
�2nx, respectively, and divide the resulting inequality by 2n, then we obtain

k2�nf .2nx/C 2�nf .�2nx/k � 2�2�n.1�p/kxkp C 2�nkf .0/k:

If we let n ! 1 in the last inequality, .h/ follows from .g/.
We note that the equation

A.x C y/ D A.x/CA.y/ .i/

holds true when either x or y is zero. Assume then that x ¤ 0 and y ¤ 0. If
x C y D 0, then .h/ implies the validity of .i/. The only remaining case is when
x, y, and x C y are all different from zero. In this case we may choose an integer
n such that k2nxk, k2nyk, and k2n.x C y/k are all greater than 2�1=pM . Then, by
(2.28), we get

�
�f
�
2n.x C y/

� � f .2nx/ � f .2ny/�� � �2np
�kxkp C kykp�:

If we divide both sides of this inequality by 2n and then let n ! 1, we find by .g/
that .i/ is true, thus A is additive.
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By definition we have A.x/ D g.x/ when kxk > 2�1=pM , thus (2.29) follows
from .d/. ut

For convenience in applications, we give the following modified version of
Theorem 2.36 (ref. [136]).

Theorem 2.37. Given a real normed space E1 and a real Banach space E2, let
numbers m > 0, � > 0, and p with 0 � p < 1 be chosen. Suppose a function
f W E1 ! E2 satisfies the inequality

kf .x C y/� f .x/ � f .y/k � �
�kxkp C kykp�

for all x; y 2 E1 such that kxk > m, kyk > m, and kx C yk > m. Then there
exists an additive function A W E1 ! E2 such that

kf .x/ � A.x/k � 2�.2� 2p/�1kxkp

for all x 2 E1 with kxk > m.

Proof. Assume that kxk > m. Then as in the proof of Theorem 2.36 we obtain
.a/ – .e/ (in the proof of Theorem 2.36) inclusive, but now all these formulas are
satisfied for kxk > m. In particular,

g.x/ D lim
n!1 2�nf .2nx/

when kxk > m. Also, if kxk > m, kyk > m, and kxCyk > m, then by hypothesis
we see that

�
�2�nf

�
2n.x C y/

� � 2�nf .2nx/ � 2�nf .2ny/
�
� � �2�n.1�p/�kxkp C kykp�

and

g.x C y/ D g.x/C g.y/

also hold true.
To apply Skof’s extension procedure in the present case, let x in E1 be given

with 0 < kxk � m and define k D k.x/ to be the unique positive integer such that

m < 2kkxk � 2m: .j /

Now define a function A W E1 ! E2 by

A.x/ D

8
<̂

:̂

0 .for x D 0/;

2�kg
�
2kx

�
.for 0 < kxk � m/;

g.x/ .for kxk > m/:
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The proofs, of .g/ and .h/, in the proof of the last theorem follow as before with
the obvious changes. Indeed, we start with x 2 E1 satisfying 0 < kxk � m and
let k D k.x/ as defined by .j /, etc. Thus, .g/ and .h/ mentioned above hold true
under the conditions of this theorem. The proof of the additivity of A also follows
as before. ut

We apply the result of Theorem 2.37 to the study of p-asymptotical derivatives:
Let E1 and E2 be Banach spaces. Suppose A W E1 ! E2 is a function satisfying
eventually a special property, for example, additivity, linearity, etc.

Let 0 < p < 1 be arbitrary. A function f W E1 ! E2 is called p-asymptotically
close to A if and only if kf .x/ � A.x/k=kxkp ! 0 as kxk ! 1. Moreover, if
A 2 L.E1; E2/, then we say that A is a p-asymptotical derivative of f and if such
an A exists, then f is called p-asymptotically derivable.

A function f W E1 ! E2 is called p-asymptotically additive if and only if for
every � > 0 there exists a ı > 0 such that

kf .x C y/� f .x/ � f .y/k � �
�kxkp C kykp�

for all x; y 2 E1 such that kxkp ; kykp ; kx C ykp > ı.
A functionA W E1 ! E2 is called additive outside a ball if there exists an r > 0

such that A.x C y/ D A.x/C A.y/ for all x; y 2 E1 such that kxk � r , kyk � r ,
and kx C yk � r .

Hyers, Isac, and Rassias [136] contributed to the following Theorems 2.38, 2.39,
and Corollary 2.40.

Theorem 2.38. If a function f W E1 ! E2 is p-asymptotically close to a function
A W E1 ! E2 which is additive outside a ball, then f is p-asymptotically additive.

Theorem 2.39. If a function f W E1 ! E2 is p-asymptotically close to a function
A W E1 ! E2 which is additive outside a ball, then f is q-asymptotically close to
an additive function, where 0 < p < q < 1.

Corollary 2.40. If a function f W E1 ! E2 is p-asymptotically close to a func-
tion A W E1 ! E2 which is additive outside a ball, then f has an additive
q-asymptotical derivative, where 0 < p < q < 1.

2.5 Method of Invariant Means

So far we have dealt with generalizations of Theorem 2.3 in connection with the
bounds for the Cauchy difference. Now, we will briefly introduce another general-
ization of the theorem from the point of view of the domain space of the functions
involved.
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Let .G; �/ be a semigroup or group and let B.G/ denote the space of all bounded
complex-valued functions on G with the norm

kf k D sup
˚
f .x/ j x 2 G�:

A linear functional m on B.G/ is called a right invariant mean if the following
conditions are satisfied:

(i) m
�
f
� D m.f / for f 2 B.G/,

(ii) inf
˚
f .x/ j x 2 G

� � m.f / � sup
˚
f .x/ j x 2 G

�
for all real-valued f 2

B.G/,
(iii) m.fx/ D m.f / for all x 2 G and f 2 B.G/, where fx.t/ D f .tx/.

If .iii/ in the above definition is replaced with m.xf / D m.f /, where xf .t/ D
f .xt/, then m is called a left invariant mean.

When a right (left) invariant mean exists on B.G/, we call G right (left)
amenable. It is known that if G is a semigroup with both right and left invari-
ant means, then there exists a two-sided invariant mean on B.G/ and in this case
G is called amenable. It is also known that if G is a group, then either right or left
amenability of G implies that G is amenable (ref. [127]). We remark that the norm
of the functionalm is one.

G. L. Forti [105] proved the following theorem.

Theorem 2.41 (Forti). Assume that .G; �/ is a right .left/ amenable semigroup.
If a function f W G ! C satisfies

jf .x � y/ � f .x/ � f .y/j � ı

for some ı � 0 and for all x; y 2 G, then there exists a homomorphismH W G ! C
such that

jf .x/ �H.x/j � ı

for all x 2 G.

Proof. Let m W B.G/ ! C be a right invariant mean. We use the notation mx to
indicate that the mean is to be applied with respect to the variable x. Define the
functionH W G ! C by

H.y/ D mx
�
f .x � y/ � f .x/�:

Using the right invariance and the linearity of the functionalm, we have

H.y/CH.z/ D mx
�
f .x � y/� f .x/

�Cmx
�
f .x � z/ � f .x/�

D mx
�
f .x � y � z/ � f .x � z/C f .x � z/ � f .x/�

D mx
�
f .x � y � z/ � f .x/

�

D H.y � z/;
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so that H is a homomorphism. We now get

jf .y/ �H.y/j D ˇ
ˇf .y/ �mx

�
f .x � y/� f .x/

�ˇˇ

D ˇ̌
mx
�
f .x � y/ � f .x/ � f .y/�ˇ̌

� kmxk jf .x � y/ � f .x/ � f .y/j
� ı

for all y 2 G. The proof for the case of a left invariant mean is similar. ut
It should be remarked that L. Székelyhidi introduced the invariant mean method

in [339, 340]. Also, he proved this theorem for the case when .G; �/ is a right (left)
amenable group (see [342]).

The method of invariant means does not provide a proof of uniqueness of the
homomorphism H . However, it should be remarked that J. Rätz [316] proved the
uniqueness of the homomorphismH .

Let us now introduce some terminologies. A vector space E is called a topologi-
cal vector space if the set E is a topological space and if the vector space operations
(vector addition and scalar multiplication) are continuous in the topology of E .
A local base of a topological vector space E is a collection B of neighborhoods
of 0 in E such that every neighborhood of 0 contains a member of B. A topological
vector space is called locally convex if there exists a local base of which members
are convex. A topological space E is a Hausdorff space if distinct points of E have
disjoint neighborhoods. A topological vector space E is called sequentially com-
plete if every Cauchy sequence in E converges to a point of E .

L. Székelyhidi [343] presented that if the equation of homomorphism is stable for
functions from a semigroupG into C, then stability also holds true for functions f W
G ! E , whereE is a semi-reflexive complex locally convex Hausdorff topological
vector space. Z. Gajda [111] significantly generalized this result, i.e., the stability
result of Székelyhidi also holds true for functions f W G ! E , where E is a
complex locally convex Hausdorff topological vector space which is sequentially
complete.

Applying the above result of Gajda to Theorem 2.41, we obtain the following
corollary (ref. [111]).

Corollary 2.42. Let .G; �/ be a right .left/ amenable semigroup, and let E be a
complex topological vector space which is locally convex, Hausdorff, and
sequentially complete. If a function f W G ! E satisfies

jf .x � y/ � f .x/ � f .y/j � ı

for some ı � 0 and for all x; y 2 G, then there exists a unique homomorphism
H W G ! E such that

jf .x/ �H.x/j � ı

for all x 2 G.
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2.6 Fixed Point Method

In Theorems 2.3. 2.5, and 2.18, the relevant additive functionsA are explicitly con-
structed from the given function f by means of

A.x/ D lim
n!1 2�nf .2nx/ or A.x/ D lim

n!1 2nf .2�nx/:

This method is called a direct method presented by D. H. Hyers [135] for the first
time. On the other hand, another approach for proving the stability was introduced
in Section 2.5. This approach is called the method of invariant means. In this section,
we will deal with a new method, namely, the fixed point method.

For a nonempty setX , we introduce the definition of the generalized metric onX .
A function d W X2 ! Œ0;1� is called a generalized metric on X if and only if d
satisfies

(M1) d.x; y/ D 0 if and only if x D y;
(M2) d.x; y/ D d.y; x/ for all x; y 2 X ;
(M3) d.x; z/ � d.x; y/C d.y; z/ for all x; y; z 2 X .

We remark that the only difference between the generalized metric and the usual
metric is that the range of the former is permitted to include the infinity.

We now introduce one of the fundamental results of the fixed point theory. For
the proof, we refer to [240].

Theorem 2.43. Let .X; d/ be a generalized complete metric space. Assume that
ƒ W X ! X is a strictly contractive operator with the Lipschitz constant L < 1.
If there exists a nonnegative integer n0 such that d

�
ƒn0C1x;ƒn0x

�
< 1 for some

x 2 X , then the following statements are true:

(i) The sequence fƒnxg converges to a fixed point x� of ƒ;
(ii) x� is the unique fixed point of ƒ in X� D ˚

y 2 X j d.ƒn0x; y/ < 1�
;

(iii) If y 2 X�, then

d.y; x�/ � 1

1 �Ld.ƒy; y/:

In 2003, V. Radu proved the Hyers–Ulam–Rassias stability of the additive
Cauchy equation (2.1) by using the fixed point method (see [279] or [57]).

Theorem 2.44 (Cădariu and Radu). Let E1 and E2 be a real normed space and
a real Banach space, respectively. Let p and � be nonnegative constants with p ¤ 1.
If a function f W E1 ! E2 satisfies the inequality

kf .x C y/� f .x/ � f .y/k � �
�kxkp C kykp� (2.30)

for all x; y 2 E1, then there exists a unique additive function A W E1 ! E2 such
that

kf .x/ �A.x/k � 2�

j2 � 2pj kxkp (2.31)

for any x 2 E1.



2.6 Fixed Point Method 75

Proof. We define the set

X D ˚
g W E1 ! E2 j p � g.0/ D 0

�

and introduce a generalized metric dp W X2 ! Œ0;1� by

dp.g; h/ D sup
x¤0

kg.x/ � h.x/k=kxkp :

We know that .X; dp/ is complete.
Now, we define an operatorƒ W X ! X by

.ƒg/.x/ D .1=q/g.qx/;

where q D 2 if p < 1, and q D 1=2 if p > 1. Then, we have

k.ƒg/.x/ � .ƒh/.x/k=kxkp D .1=q/kg.qx/ � h.qx/k=kxkp
D qp�1kg.qx/ � h.qx/k=kqxkp
� qp�1dp.g; h/

for any g; h 2 X . Thus, we conclude that

dp.ƒg;ƒh/ � qp�1dp.g; h/

for all g; h 2 X , i.e., ƒ is a strictly contractive operator on X with the Lipschitz
constant L D qp�1.

If we put y D x in (2.30), then we get

k2f .x/ � f .2x/k � 2�kxkp

for each x 2 E1, which implies that

dp.f;ƒf / �
�
� .for p < 1/;
21�p� .for p > 1/:

.a/

According to Theorem 2.43 .i/, there exists a function A W E1 ! E2 which is a
fixed point of ƒ, i.e.,

A.2x/ D 2A.x/

for all x 2 E1. In addition, A is uniquely determined in the set

X� D ˚
g 2 X j dp.f; g/ < 1�

:
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Moreover, due to Theorem 2.43 .i/, we see that dp.ƒnf;A/ ! 0 as n ! 1, i.e.,

A.x/ D lim
n!1 q�nf .qnx/ .b/

for any x 2 E1. In view of Theorem 2.43 .iii/ and .a/, we have

dp.f; A/ � 1

1 � qp�1 dp.f;ƒf / � 2�

j2 � 2pj ;

which implies the validity of the inequality (2.31).
If we replace x and y in (2.30) with qnx and qny, respectively, then we obtain

�
�q�nf

�
qn.x C y/

� � q�nf .qnx/ � q�nf .qny/
�
� � Ln�

�kxkp C kykp�

for all x; y 2 E1. If we let n ! 1 in the preceding inequality and consider .b/,
then we have

A.x C y/ D A.x/CA.y/

for any x; y 2 E1. ut

2.7 Composite Functional Congruences

It is also interesting to study the stability problem when the values of the Cauchy
difference f .x C y/ � f .x/ � f .y/ are forced to lie near integers, i.e.,

f .x C y/� f .x/ � f .y/ 2 Z C .�"; "/; (2.32)

where " is a small positive number.
R. Ger and P. Šemrl [123] proved that if a function f W G ! R, where G is a

cancellative abelian semigroup, satisfies the condition in (2.32) with 0 < " < 1=4,
then there exists a function p W G ! R such that p.xC y/�p.x/�p.y/ 2 Z and
jf .x/ � p.x/j � ".

Such a property of functions satisfying (2.32) is called the composite functional
congruence. It is a generalization of the functional congruence which was first stud-
ied by van der Corput [86].

Before stating the results of Ger and Šemrl, we introduce a theorem of M. Hosszú
[134]. We may omit the proof because it is beyond the scope of this book.

Theorem 2.45. LetG1 and G2 be a cancellative abelian semigroup and a divisible
abelian group, respectively, in which the equation nx D y has a unique solution
x 2 G2 for each fixed y 2 G2 and any n 2 N . The most general form of solutions
f W G21 ! G2 of the functional equation

f .x C y; z/C f .x; y/ D f .x; y C z/C f .y; z/
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is f .x; y/ D B.x; y/ C g.x C y/ � g.x/ � g.y/, where B W G21 ! G2 is an ar-
bitrary skew-symmetric biadditive function and where g W G1 ! G2 is an arbitrary
function.

Let .G;C/ be a group and let U; V � G. We can define the addition and the
subtraction between sets by

U C V D ˚
x C y j x 2 U; y 2 V �

and

U � V D ˚
x � y j x 2 U; y 2 V �:

For convenience, let us define UC D U C U and U� D U � U . We remark that if
.G;C/ is an abelian group, then .UC/� D .U�/C.

A set of generators of a group G is a subset S of G such that each element of G
can be represented (using the group operations) in terms of members of S , where
the repetitions of members of S are allowed.

If G is an abelian group with a finite set of generators, then G is a Cartesian
product of infinite cyclic groups F1; F2; : : : ; Fm and cyclic groupsH1;H2; : : : ;Hn
of finite order. If n D 0, G is called torsion-free.

Ger and Šemrl [123] proved the following theorem.

Theorem 2.46. Let .G1;C/ and .G2;C/ be a cancellative abelian semigroup and
a torsion-free divisible abelian group, respectively. Assume that U and V are
nonempty subsets of G2 with .UC/� \ .V C/� D f0g. If a function f W G1 ! G2
satisfies

f .x C y/ � f .x/ � f .y/ 2 U C V

for all x; y 2 G1, it can be represented by

f D u C v;

where u; v W G1 ! G2 satisfy the relations

u.x C y/ � u.x/� u.y/ 2 U

and

v.x C y/� v.x/ � v.y/ 2 V
for all x; y 2 G1. The functions u and v are determined uniquely up to an additive
function.

Proof. There are functions  W G21 ! U and ' W G21 ! V such that

d.x; y/ D f .x C y/ � f .x/ � f .y/ D  .x; y/C '.x; y/

for all x; y 2 G1. The commutativity of .G1;C/ implies that d is symmetric.
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Claim that  is symmetric. We have

 .x; y/ �  .y; x/ D d.x; y/ � '.x; y/ � d.y; x/C '.y; x/ 2 V �:

On the other hand,

 .x; y/ �  .y; x/ 2 U�;

and since 0 2 U� \ V �, we infer that

 .x; y/ �  .y; x/ 2 U� \ V �

� �
U� C U�� \ �

V � C V ��

D �
UC�� \ �

V C��

D f0g:

Claim that  satisfies

 .x; y C z/C  .y; z/ D  .x C y; z/C  .x; y/ .a/

for all x; y 2 G1. A straightforward computation yields that d satisfies the same
functional equation. Consequently,

 .x; y C z/C  .y; z/ �  .x C y; z/ �  .x; y/

D '.x C y; z/C '.x; y/ � '.x; y C z/ � '.y; z/

2 �UC�� \ �
V C��

D f0g;

which proves .a/.
According to Theorem 2.45, there exists a function u W G1 ! G2 such that

 .x; y/ D u.x C y/ � u.x/ � u.y/ 2 U

for any x; y 2 G1 (since  is symmetric, we take B.x; y/ � 0 in Theorem 2.45).
Now, define v.x/ D f .x/ � u.x/ for all x 2 G1. Then, we have

'.x; y/ D d.x; y/ �  .x; y/ D v.x C y/ � v.x/ � v.y/ 2 V

for all x; y 2 G1.
In order to prove the uniqueness, we assume that there are two representations

f D u C v D u0 C v0
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with the properties described above. Putting

a D u � u0 D v0 � v;

we get

a.x C y/ � a.x/ � a.y/
D �

u.x C y/� u.x/� u.y/
�� �

u0.x C y/ � u0.x/ � u0.y/
�

2 U�:

Similarly,

a.x C y/� a.x/ � a.y/ 2 V �:

These two relations, together with 0 2 U� \ V �, imply the additivity of a. More-
over, we have

u0 D u � a and v0 D v C a

which ends the proof. ut
Let E be a vector space and let V � E . The intersection of all convex sets in E

containing V is called the convex hull of V and denoted by CoV . Thus, CoV is the
smallest convex set containing V .

LetU be a subset of a topological vector space and letU denote the closure of U .
Ger and Šemrl [123] also presented the following theorem.

Theorem 2.47 (Ger and Šemrl). Let .G;C/ be a cancellative abelian semigroup,
and let E be a Banach space. Assume that nonempty subsets U; V � E satisfy
.UC/� \ .V C/� D f0g, 0 2 V , and V is bounded. If a function f W G ! E

satisfies
f .x C y/ � f .x/ � f .y/ 2 U C V

for all x; y 2 G, then there exists a function p W G ! E such that

p.x C y/� p.x/ � p.y/ 2 U
for any x; y 2 G, and

p.x/ � f .x/ 2 CoV

for any x 2 G. Moreover, if U� \ 3
�
CoV

�� D f0g, then the function p is unique.

Proof. According to Theorem 2.46, there exist functions u; v W G ! E such that
f D u C v, u.x C y/ � u.x/ � u.y/ 2 U , and v.x C y/ � v.x/ � v.y/ 2 V for
x; y 2 G. It follows from [105, Theorem 4] that there exists an additive function
a W G ! E such that

v.x/ � a.x/ 2 Co.�V / D � CoV
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for all x 2 G. Putting p D u C a and applying f D u C v, we get the desired
relation

p.x/ � f .x/ 2 CoV

for any x 2 G.
Assume that p1; p2 W G ! E are two functions such that

pi .x C y/ � pi .x/ � pi .y/ 2 U

for any x; y 2 G, and

pi .x/ � f .x/ 2 CoV

for all x 2 G and i 2 f1; 2g. Then, we have

r.x/ D p1.x/ � p2.x/ D �
p1.x/ � f .x/� � �

p2.x/ � f .x/
� 2 �CoV

��

for all x 2 G. Consequently, using the notation V0 D CoV , we obtain

r.x C y/� r.x/ � r.y/ 2 .U � U /\ �
V �
0 � V �

0 � V �
0

�

D U� \ 3V �
0

D f0g;
since V �

0 is convex and symmetric with respect to zero. Thus, r is additive and
bounded. An extended version of Theorem 2.1 implies that r.x/Dp1.x/�p2.x/� 0.
This ends the proof. ut

Ger and Šemrl also gave the following corollary in the paper [123].

Corollary 2.48. Let .G;C/ be a cancellative abelian semigroup, and let " 2
.0; 1=4/. If a function f W G ! R satisfies the congruence

f .x C y/ � f .x/ � f .y/ 2 Z C .�"; "/

for all x; y 2 G, then there exists a function p W G ! R such that

p.x C y/� p.x/ � p.y/ 2 Z

for any x; y 2 G, and

jf .x/ � p.x/j � "

for all x 2 G.

Proof. Let U D Z and V D .�"; "/. Then, we have .UC/� D Z and .V C/� D
.�1; 1/ and hence .UC/� \ .V C/� D f0g. Therefore, the assertion is an immediate
consequence of Theorem 2.47. ut
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2.8 Pexider Equation

In this section, we prove the Hyers–Ulam–Rassias stability of the Pexider equation,

f .x C y/ D g.x/C h.y/:

LetG1 and G2 be abelian groups. It is well-known that functions f; g; h W G1 !
G2 satisfy the Pexider equation if and only if there exist an additive function A W
G1 ! G2 and constants a; b 2 G2 such that

f .x/ D A.x/C a C b; g.x/ D A.x/C a; h.x/ D A.x/C b

for all x 2 G1.
In 1993, J. Chmieliński and J. Tabor [67] investigated the stability of the Pexider

equation (ref. [126]). This paper seems to be the first one concerning the stabil-
ity problem of the Pexider equation. We will introduce a theorem presented by
K.-W. Jun, D.-S. Shin, and B.-D. Kim [155].

Theorem 2.49 (Jun, Shin, and Kim). Let G and E be an abelian group and a
Banach space, respectively. Let ' W G2 ! Œ0;1/ be a function satisfying

ˆ.x/ D
1X

iD1
2�i�'

�
2i�1x; 0

�C '
�
0; 2i�1x

�C '
�
2i�1x; 2i�1x

��
< 1

and

lim
n!1 2�n'.2nx; 2ny/ D 0

for all x; y 2 G. If functions f; g; h W G ! E satisfy the inequality

kf .x C y/� g.x/ � h.y/k � '.x; y/ (2.33)

for all x; y 2 G, then there exists a unique additive function A W G ! E such that

kf .x/ �A.x/k � kg.0/k C kh.0/k Cˆ.x/;

kg.x/ �A.x/k � kg.0/k C 2kh.0/k C '.x; 0/Cˆ.x/; (2.34)

kh.x/ �A.x/k � 2kg.0/k C kh.0/k C '.0; x/Cˆ.x/

for all x 2 G.

Proof. If we put y D x in (2.33), then we have

kf .2x/ � g.x/ � h.x/k � '.x; x/ .a/
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for all x 2 G. Putting y D 0 in (2.33) yields that

kf .x/ � g.x/ � h.0/k � '.x; 0/ .b/

for any x 2 G. It follows from .b/ that

kg.x/ � f .x/k � kh.0/k C '.x; 0/ .c/

for each x 2 G. If we put x D 0 in (2.33), then we get

kf .y/ � g.0/� h.y/k � '.0; y/

for y 2 G. Thus, we obtain

kh.x/ � f .x/k � kg.0/k C '.0; x/ .d/

for all x 2 G.
Let us define

u.x/ D kg.0/k C kh.0/k C '.0; x/C '.x; 0/C '.x; x/:

Using the inequalities .a/, .c/, and .d/, we have

kf .2x/ � 2f .x/k
� kf .2x/ � g.x/ � h.x/k C kg.x/ � f .x/k C kh.x/ � f .x/k
� kg.0/k C kh.0/k C '.0; x/C '.x; 0/C '.x; x/

D u.x/ (e)

for all x 2 G. Replacing x with 2x in .e/, we get

�
�f
�
22x

� � 2f .2x/
�
� � u.2x/ .f /

for any x 2 G. It then follows from .e/ and .f / that

��f
�
22x

� � 22f .x/�� � ��f
�
22x

� � 2f .2x/
��C 2kf .2x/ � 2f .x/k

� u.2x/C 2u.x/

for all x 2 G.
Applying an induction argument on n, we will prove that

kf .2nx/ � 2nf .x/k �
nX

iD1
2i�1u.2n�ix/ .g/
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for all x 2 G and n 2 N . In view of .e/, the inequality .g/ is true for n D 1.
Assume that .g/ is true for some n > 0. Substituting 2x for x in .g/, we obtain

�
�f
�
2nC1x

� � 2nf .2x/
�
� �

nX

iD1
2i�1u

�
2nC1�ix

�

for any x 2 G. Hence, it follows from .e/ that

�
�f
�
2nC1x

� � 2nC1f .x/
�
� � �

�f
�
2nC1x

� � 2nf .2x/��C 2nkf .2x/ � 2f .x/k

�
nX

iD1
2i�1u

�
2nC1�ix

�C 2nu.x/

D
nC1X

iD1
2i�1u

�
2nC1�ix

�

for all x 2 G, which proves the inequality .g/.
By .g/, we have

k2�nf .2nx/ � f .x/k �
nX

iD1
2i�1�nu.2n�ix/ .h/

for all x 2 G and n 2 N . Moreover, if m; n 2 N with m < n, then it follows from
.e/ that

k2�nf .2nx/ � 2�mf .2mx/k

�
n�1X

iDm

�
�2�if .2ix/ � 2�.iC1/f

�
2iC1x

���

�
n�1X

iDm
2�.iC1/u.2ix/

D
n�1X

iDm
2�.iC1/�kg.0/k C kh.0/k C '.0; 2ix/C '.2ix; 0/C '.2ix; 2ix/

�

� 2�m�kg.0/k C kh.0/k�

C
1X

iDm
2�.iC1/�'.0; 2ix/C '.2ix; 0/C '.2ix; 2ix/

�

! 0 as m ! 1
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for all x 2 G. Hence, f2�nf .2nx/g is a Cauchy sequence for every x 2 G. Since
E is a Banach space, we can define a function A W G ! E by

A.x/ D lim
n!1 2�nf .2nx/:

In view of (2.33), we obtain

k2�nf .2nx C 2ny/ � 2�ng.2nx/ � 2�nh.2ny/k � 2�n'.2nx; 2ny/

for all x 2 G and n 2 N . It follows from .c/ that

k2�ng.2nx/ � 2�nf .2nx/k � 2�n�kh.0/k C '.2nx; 0/
�

.i/

for any x 2 G and n 2 N . Since

2�n'.2nx; 0/ � 2

1X

iDn
2�.iC1/�'.0; 2ix/C '.2ix; 0/C '.2ix; 2ix/

�

! 0 as n ! 1;

it follows from .i/ that

lim
n!1 2�ng.2nx/ D lim

n!1 2�nf .2nx/ D A.x/ .j /

for each x 2 G. Also, by .d/, we have

k2�nh.2nx/ � 2�nf .2nx/k � 2�n�kg.0/k C '.0; 2nx/
�

.k/

for all x 2 G and n 2 N . Similarly, it follows from .k/ that

lim
n!1 2�nh.2nx/ D lim

n!1 2�nf .2nx/ D A.x/ .l/

for each x 2 G. Thus, by (2.33), .j /, .l/, and the commutativity of G, we get

0 D
�
�
� lim
n!1

�
2�nf .2nx C 2ny/ � 2�ng.2nx/ � 2�nh.2ny/

���
�

D kA.x C y/ �A.x/ � A.y/k

for all x; y 2 G.
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Taking the limit in .h/ as n ! 1 yields

kA.x/ � f .x/k

� lim
n!1

nX

iD1
2i�1�nu.2n�ix/

D lim
n!1

�
1 � 2�n��kg.0/k C kh.0/k�

C lim
n!1

nX

iD1
2�i�'

�
0; 2i�1x

�C '
�
2i�1x; 0

�C '
�
2i�1x; 2i�1x

��

D kg.0/k C kh.0/k Cˆ.x/

for each x 2 G, which proves (2.34).
It remains to prove the uniqueness of A. Assume that A0 W G ! E is another

additive function which satisfies the inequalities in (2.34). Then we have

kA.x/ �A0.x/k
� 2�nkA.2nx/ � f .2nx/k C 2�nkf .2nx/ � A0.2nx/k
� 2�nC1�kg.0/k C kh.0/k Cˆ.2nx/

�

D 2�.n�1/�kg.0/k C kh.0/k�

C 2

1X

iDnC1
2�i�'

�
0; 2i�1x

�C '
�
2i�1x; 0

�C '
�
2i�1x; 2i�1x

��

! 0 as n ! 1
for each x 2 G, which implies that A.x/ D A0.x/ for all x 2 G. ut
Corollary 2.50. Let E1 and E2 be Banach spaces and let � � 0 and p 2 Œ0; 1/ be
constants. If functions f; g; h W E1 ! E2 satisfy the inequality

kf .x C y/ � g.x/ � h.y/k � �
�kxkp C kykp�

for all x; y 2 E1, then there exists a unique linear function A W E1 ! E2 such that

kf .x/ � A.x/k � kg.0/k C kh.0/k C 4�

2 � 2p
kxkp ;

kg.x/ � A.x/k � kg.0/k C 2kh.0/k C 6 � 2p
2 � 2p �kxkp ;

kh.x/ �A.x/k � 2kg.0/k C kh.0/k C 6 � 2p
2 � 2p �kxkp

for any x 2 E1.

In 2000, Y.-H. Lee and K.-W. Jun [232] investigated the Hyers–Ulam–Rassias
stability of the Pexider equation on the restricted domains (ref. [274]).
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2.9 Remarks

T. Aoki [7] appears to be the first to extend the theorem of Hyers (Theorem 2.3) for
additive functions. Indeed, Aoki provided a proof of the special case of the theorem
of Th. M. Rassias when the given function is additive.

It was Th. M. Rassias [285] who was the first to prove the stability of the linear
function in Banach spaces.

D. G. Bourgin [28] stated the following result without proof, which is similar to
the theorem of Găvruta (Theorem 2.18).

Let E1 and E2 be Banach spaces and let ' W Œ0;1/2 ! Œ0;1/ be a monotone
nondecreasing function such that

ˆ.x/ D
1X

kD1
2�k'

�
2kkxk; 2kkxk� < 1

for all x 2 E1. If a function f W E1 ! E2 satisfies

kf .x C y/� f .x/ � f .y/k � '
�kxk; kyk�

for all x; y 2 E1, then there exists a unique additive function A W E1 ! E2 such
that

kf .x/ � A.x/k � ˆ.x/

for any x 2 E1.

G. L. Forti [104] used a similar idea in proving his stability theorem for a class
of functional equations of the form

f
�
F.x; y/

� D H
�
f .x/; f .y/

�

with f as the unknown function, which includes the additive Cauchy equation as a
special case. In the special case of the additive Cauchy equation, it proves that the
result of Bourgin with an abelian semigroup .G;C/ instead of the Banach space E1
holds true under an additional condition such as

lim
k!1

2�k'
�
2kkxk; 2kkyk� D 0

for all x; y 2 G.
Recently, S.-M. Jung and S. Min [193] have proved the Hyers–Ulam–Rassias

stability of the functional equations of the type f .x C y/ D H
�
f .x/; f .y/

�
by

using the fixed point method, where H is a bounded linear transformation.



Chapter 3
Generalized Additive Cauchy Equations

It is very natural for one to try to transform the additive Cauchy equation into
other forms. Some typically generalized additive Cauchy equations will be in-
troduced. The functional equation f .ax C by/ D af .x/ C bf .y/ appears in
Section 3.1. The Hyers–Ulam stability problem is discussed in connection with a
question of Th. M. Rassias and J. Tabor. In Section 3.2, the functional equation
(3.3) is introduced, and the Hyers–Ulam–Rassias stability for this equation is also
studied. The stability result for this equation will be used to answer the question
of Rassias and Tabor cited above. The last section deals with the functional equa-
tion f .x C y/2 D �

f .x/C f .y/
�2

. The continuous solutions and the Hyers–Ulam
stability for this functional equation will be investigated.

3.1 Functional Equation f .ax C by/ D af .x/ C bf .y/

It is a very natural thing to generalize the additive Cauchy equation (2.1) into the
functional equation f .axCby/ D af .x/Cbf .y/ and study the stability problems
for this equation.

In the paper [312], Th. M. Rassias and J. Tabor asked whether the functional
equation f .ax C by C c/ D Af .x/CBf .y/C C with abAB ¤ 0 is stable in the
sense of Hyers, Ulam, and Rassias.

C. Badea [8] answered this question of Rassias and Tabor for the case when
c D C D 0, a D A, and b D B .

Theorem 3.1 (Badea). Let a and b be nonnegative real numbers with ˛D aCb>0.
Let H W Œ0;1/2 ! Œ0;1/ be a function for which there exists a positive number
k < ˛ such that H.˛s; ˛t/ � kH.s; t/ for all s; t 2 Œ0;1/. Given a real normed
space E1 and a real Banach space E2, assume that a function f W E1 ! E2
satisfies the inequality

kf .ax C by/ � af .x/ � bf .y/k � H
�kxk; kyk� (3.1)

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 3, c� Springer Science+Business Media, LLC 2011
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for all x; y 2 E1. Then there exists a unique function A W E1 ! E2 such that

A.ax C by/ D aA.x/C bA.y/

for any x and y in E1, and

kf .x/ � A.x/k � .˛ � k/�1H
�kxk; kxk� (3.2)

for all x 2 E1.

Proof. Let x be a fixed point of E1. Putting y D x in the inequality (3.1) yields

kf .˛x/ � f̨ .x/k � H
�kxk; kxk�

which implies

k.1=˛/f .˛x/ � f .x/k � .1=˛/H
�kxk; kxk�: .a/

We now use an induction argument to prove

k˛�nf .˛nx/ � f .x/k � 1 � .k=˛/n

˛ � k
H
�kxk; kxk� .b/

for any n 2 N . Assume that the inequality .b/ holds true for a fixed n � 1. If we
substitute ˛x for x in .b/ and divide the resulting inequality by ˛, then we obtain

��˛�n�1f
�
˛nC1x

� � .1=˛/f .˛x/
�� � 1 � .k=˛/n

˛.˛ � k/
H
�
˛kxk; ˛kxk�

� 1 � .k=˛/n
˛.˛ � k/

kH
�kxk; kxk�:

This, together with .a/, leads to the inequality

�
�˛�n�1f

�
˛nC1x

� � f .x/�� �
	
1 � .k=˛/n

˛.˛ � k/ k C 1

˛



H
�kxk; kxk�:

It can be easily seen that

1 � .k=˛/nC1

˛ � k D 1 � .k=˛/n

˛.˛ � k/ k C 1

˛

which implies the validity of the inequality .b/ for every n 2 N .
Let m and n be integers with m > n > 0. Then we have

k˛�mf .˛mx/ � ˛�nf .˛nx/k D ˛�n��˛�.m�n/f .˛mx/ � f .˛nx/
�
�

D ˛�nk˛�rf .˛ry/� f .y/k;



3.1 Functional Equation f .ax C by/ D af .x/C bf .y/ 89

where r D m � n and y D ˛nx. Therefore, using this equality and the inequality
.b/, we get

k˛�mf .˛mx/ � ˛�nf .˛nx/k � 1 � .k=˛/r

˛n.˛ � k/
H
�k˛nxk; k˛nxk�:

However,

H
�k˛nxk; k˛nxk� D H

�
˛k˛n�1xk; ˛k˛n�1xk�

� kH
�k˛n�1xk; k˛n�1xk�

� � � �
� knH

�kxk; kxk�:

Hence,

k˛�mf .˛mx/ � ˛�nf .˛nx/k � .k=˛/n
1 � .k=˛/r
˛ � k H

�kxk; kxk�:

As k < ˛, the right-hand side of the inequality tends to zero if n tends to infinity.
Therefore, the sequence f˛�nf .˛nx/g is a Cauchy sequence. We may use the direct
method to define

A.x/ D lim
n!1˛�nf .˛nx/

for all x 2 E1. The inequality (3.2) follows immediately from .b/.
We will show that A satisfies the equality A.axC by/ D aA.x/C bA.y/ for all

x; y 2 E1. Let x and y be points of E1. Then (3.1) implies

�
�f
�
˛n.ax C by/

� � af .˛nx/ � bf .˛ny/
�
� � H

�k˛nxk; k˛nyk�

� knH
�kxk; kyk�

and hence

˛�n��f
�
˛n.ax C by/

� � af .˛nx/ � bf .˛ny/�� � .k=˛/nH
�kxk; kyk�:

We get A.ax C by/ D aA.x/ C bA.y/, since .k=˛/n tends to zero as n tends to
infinity.

Suppose there exists another function A0 W E1 ! E2 such that

kf .x/ � A0.x/k � .˛ � k0/�1H 0�kxk; kxk�

for a certain functionH 0 with the corresponding number k0 < ˛ and such that

A0.ax C by/ D aA0.x/C bA0.y/
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for all x; y 2 E1. Since A.˛nx/ D ˛nA.x/ and A0.˛nx/ D ˛nA0.x/, we have

kA.x/ � A0.x/k � kA.x/ � f .x/k C kf .x/ �A0.x/k
� .˛ � k/�1H �kxk; kxk� C .˛ � k0/�1H 0�kxk; kxk�

and thus

kA.x/ � A0.x/k D k˛�nA.˛nx/ � ˛�nA0.˛nx/k
� .k=˛/n.˛ � k/�1H �kxk; kxk�

C .k0=˛/n.˛ � k0/�1H 0�kxk; kxk�:

Both terms of the right-hand side of the above formula tend to zero for n tending to
infinity. Thus, A0 coincides with A. ut

As Gajda [111] extended the result of Theorem 2.5, Badea [8] also modified the
result of the previous theorem by using a similar method. Hence, we omit the proof.

Theorem 3.2. Let a and b be nonnegative real numbers such that ˛ D a C b > 0.
Let H W Œ0;1/2 ! Œ0;1/ be a function for which there exists a positive number
k < 1=˛ such that H.s=˛; t=˛/ � kH.s; t/ for all s; t 2 Œ0;1/. Given a real
normed spaceE1 and a real Banach spaceE2, assume that a function f W E1 ! E2
satisfies the inequality

kf .ax C by/ � af .x/ � bf .y/k � H
�kxk; kyk�

for all x; y 2 E1. Then there exists a unique function A W E1 ! E2 such that

A.ax C by/ D aA.x/C bA.y/

for any x; y 2 E1, and

kf .x/ � A.x/k � �
k=.1 � ˛k/�H �kxk; kxk�

for all x 2 E1.

Theorems 3.1 and 3.2 generalize the results of Theorems 2.11 and 2.17, respec-
tively. In the case when the functionH is given by

H.s; t/ D �
�
 .s/C  .t/

�
;

Badea [8] proved the following corollary.

Corollary 3.3. Let a and b be nonnegative real numbers such that ˛ D aC b > 0.
Let  W Œ0;1/ ! Œ0;1/ be a function for which there exists a positive number
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k < ˛ such that  .˛s/ � k .s/ for all s � 0. Given a real normed spaceE1 and a
real Banach space E2, assume that a function f W E1 ! E2 satisfies the inequality

kf .ax C by/ � af .x/ � bf .y/k � �
�
 .kxk/C  .kyk/�

for some � � 0 and for all x; y 2 E1. Then there exists a unique functionA W E1 !
E2 such that

A.ax C by/ D aA.x/C bA.y/

for any x; y 2 E1, and

kf .x/ � A.x/k � �
2�=.˛ � k/

�
 
�kxk�

for all x 2 E1.

3.2 Additive Cauchy Equations of General Form

Throughout this section, let E1 and E2 be a complex normed space and a complex
Banach space, respectively, let m � 2 be a fixed integer, and let .aij / be a matrix in
Cm�m of which determinant, denoted by !, is nonzero. By !ij , i; j 2 f1; : : : ; mg,
we denote the cofactor of the matrix .aij / corresponding to the entry aij . For any
i 2 f1; : : : ; mg we denote by !i the determinant of the matrix that remains after all
entries of the i -th column in .aij / are replaced with 1. Let ai and bi , i 2 f1; : : : ; mg,
be complex numbers for which there exist some j; k 2 f1; : : : ; mg with aj ¤ 0 and
bk ¤ 0.

S.-M. Jung [162] investigated the stability problem for a generalized additive
Cauchy functional equation

f

0

@x0 C
mX

jD1
aj xj

1

A D
mX

iD1
bif

0

@
mX

jD1
aijxj

1

A (3.3)

for all x1; : : : ; xm 2 E1, where x0 is a fixed point of E1. In the case of x0 D 0 in
(3.3), the Hyers–Ulam–Rassias stability problem is treated in Theorem 3.6. Further,
this result will be applied to the study of a question on the stability for a special form
of generalized additive Cauchy equation suggested by Rassias and Tabor [312].

Let us define

r D
mX

iD1
ai!i!

�1 and B D
mX

iD1
bi (3.4)

and assume jr j; jBj 62 f0; 1g. For a fixed x0 2 E1 and an x 2 E1 we define

s0.x/ D x; s1.x/ D rx C x0; and snC1.x/ D sn.s1.x//
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for any n 2 N . It is not difficult to show

smCn.x/ D sm.sn.x// (3.5)

for any m; n 2 N . Further, suppose that a function ' W Em1 ! Œ0;1/ satisfies

ˆ.x1; : : : ; xm/ D
1X

iD0
jBj�i�1'�!1!�1si .x1/; : : : ; !m!�1si .xm/

�
< 1 (3.6)

and

ˆ
�
sn.x/; : : : ; sn.x/

� D o
�jBjn� as n ! 1 (3.7)

for all x; x1; : : : ; xm 2 E1.

Lemma 3.4. It holds true that

! D
mX

jD1
aij!j

for all i 2 f1; : : : ; mg.

Proof. Consider the following system of inhomogeneous linear equations with m
unknowns z1; z2; : : : ; zm in C

8
ˆ̂<

ˆ̂
:

a11z1 C a12z2 C � � � C a1mzm D 1;

a21z1 C a22z2 C � � � C a2mzm D 1;

� � � � � � � � �
am1z1 C am2z2 C � � � C ammzm D 1:

Since ! ¤ 0, the solution of this system is uniquely determined by zj D !j!
�1,

j 2 f1; : : : ; mg. Hence, it holds true that

mX

jD1
aij!j!

�1 D 1;

for any i 2 f1; : : : ; mg, which ends the proof. ut
We now investigate the stability problem for a generalized additive Cauchy equa-

tion, i.e., the stability problem for the functional inequality

�
�
��
�
�
f

0

@x0 C
mX

jD1
aj xj

1

A �
mX

iD1
bif

0

@
mX

jD1
aij xj

1

A

�
�
��
�
�

� '.x1; : : : ; xm/ (3.8)

for all x1; : : : ; xm 2 E1.
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S.-M. Jung [162] contributed to the following theorem:

Theorem 3.5. If a function f W E1 ! E2 satisfies the inequality (3.8) for all
x1; : : : ; xm 2 E1, then there exists a unique function A W E1 ! E2 which satisfies

A.rx C x0/ D BA.x/ (3.9)

and

kf .x/ �A.x/k � ˆ.x; : : : ; x/ (3.10)

for all x 2 E1.

Proof. Let x be an arbitrary point of E1. Using Lemma 3.4 and putting xi D
!i!

�1x, i 2 f1; : : : ; mg, it follows from (3.8) that

�
�f
�
s1.x/

� � Bf .x/�� � '
�
!1!

�1x; : : : ; !m!�1x
�
: .a/

We will now prove

�
�f
�
sn.x/

� � Bnf .x/�� �
n�1X

iD0
jBjn�1�i'

�
!1!

�1si .x/; : : : ; !m!�1si .x/
�

.b/

for all n 2 N . In view of .a/ it is easy to see the validity of .b/ in the case of n D 1.
Let us assume that .b/ holds true for some integer n > 0. Replacing x in .b/ with
s1.x/ and using (3.5) we obtain

��f
�
snC1.x/

� � Bnf
�
s1.x/

���

D �
�f
�
snC1.x/

� � Bn
�
f .s1.x// � Bf .x/� � BnC1f .x/

�
�

�
n�1X

iD0
jBjn�1�i'

�
!1!

�1siC1.x/; : : : ; !m!�1siC1.x/
�
:

Hence, it follows from .a/ that

�
�f
�
snC1.x/

� � BnC1f .x/
�
� �

nX

iD0
jBjn�i'

�
!1!

�1si .x/; : : : ; !m!�1si .x/
�

which implies the validity of .b/ for all n 2 N .
If we divide both sides in .b/ by jBjn we get

��B�nf
�
sn.x/

� � f .x/�� �
n�1X

iD0
jBj�i�1'�!1!�1si .x/; : : : ; !m!�1si .x/

�
: .c/
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Next, we present that the sequence fB�nf .sn.x//g is a Cauchy sequence. In
view of (3.5), .c/, and (3.6), for any positive integers p and q with p < q, the
following estimation is possible:

kB�qf .sq.x//� B�pf .sp.x//k
D jBj�p��B�.q�p/f

�
sq�p.sp.x//

� � f �sp.x/
���

� jBj�p
q�p�1X

iD0
jBj�i�1'�!1!�1spCi .x/; : : : ; !m!�1spCi .x/

�

�
q�1X

iDp
jBj�i�1'�!1!�1si .x/; : : : ; !m!�1si .x/

�

! 0 as p ! 1:

Since E2 is a Banach space, we can define

A.x/ D lim
n!1B�nf

�
sn.x/

�
.d/

for all x 2 E1. On account of (3.6), .c/, and .d/, the validity of (3.10) is clear.
Further, replacing x in .d/ with s1.x/ and in view of (3.5), the validity of (3.9) is
also obvious.

It only remains to prove the uniqueness of A. Assume that A0 W E1 ! E2 is
another function that satisfies (3.9) and (3.10). From (3.9) and (3.5) it follows that

A.sn.x// D BnA.x/ and A0.sn.x// D BnA0.x/

for all n 2 N . Hence, by (3.10) and (3.7), we get

kA.x/ � A0.x/k
D jBj�nkA.sn.x// �A0.sn.x//k
� jBj�n�kA.sn.x//� f .sn.x//k C kf .sn.x// �A0.sn.x//k

�

� 2jBj�nˆ�sn.x/; : : : ; sn.x/
�

! 0 as n ! 1;

which implies the uniqueness of A. ut
On the other hand, if x0 D 0 is assumed in the functional inequality (3.8), we

can prove the Hyers–Ulam–Rassias stability of the equation (3.8) (ref. [162]).

Theorem 3.6. Assume that x0 D 0 in the functional inequality (3.8). If a function
f W E1 ! E2 satisfies the inequality (3.8) for all x1; : : : ; xm 2 E1, then there exists
a unique function A W E1 ! E2 which satisfies (3.10) and
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A

0

@
mX

jD1
aj xj

1

A D
mX

iD1
biA

0

@
mX

jD1
aijxj

1

A (3.11)

for all x1; : : : ; xm 2 E1.

Proof. Let us define A as in .d/ in the proof of the last theorem. On account of
Theorem 3.5, it only remains to prove (3.11). Since sn.x/ D rnx (x0 D 0), by (3.8)
with x0 D 0 and by (3.6), we obtain

�
�
�
�
��
A

0

@
mX

jD1
aj xj

1

A �
mX

iD1
biA

0

@
mX

jD1
aij xj

1

A

�
�
�
�
��

D lim
n!1 jBj�n

�
�
�
�
�
�
f

0

@rn
mX

jD1
ajxj

1

A �
mX

iD1
bif

0

@rn
mX

jD1
aijxj

1

A

�
�
�
�
�
�

� lim
n!1 jBj�n'.rnx1; : : : ; rnxm/

D jBj lim
n!1 jBj�n�1'

�
!1!

�1sn
�
!�1
1 !x1

�
; : : : ; !m!

�1sn
�
!�1
m !xm

��

D 0;

which completes our proof. ut
Since ! ¤ 0 is assumed, the set of vectors

˚
.a11; a12; : : : ; a1m/; .a21; a22; : : : ; a2m/; : : : ; .am1; am2; : : : ; amm/

�

establishes a basis for Cm. Therefore, we can uniquely determine the complex num-
bers d1; d2; : : : ; dm such that

.a1; a2; : : : ; am/ D
mX

iD1
di .ai1; ai2; : : : ; aim/:

Jung [162] introduced some properties of the general solution of the generalized
additive Cauchy equation (3.11).

Theorem 3.7. Assume that !kk ¤ 0 for some k 2 f1; : : : ; mg. If a function
f W E1 ! E2 satisfies the generalized additive Cauchy equation (3.11) for all
x1; : : : ; xm 2 E1 and, in addition, this satisfies f .0/ D 0, then it holds true that
f .dkx/ D bkf .x/ for all x 2 E1.

Proof. Putting xi D !ki!
�1
kk
xk , i 2 f1; : : : ; mg, and using this well-known fact

mX

jD1
aij!kj D ıik!
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yield

mX

jD1
aj xj D

mX

jD1

mX

iD1
diaij xj D

mX

iD1
di

mX

jD1
aij xj D dk!!

�1
kk xk

and
mX

jD1
aij xj D

mX

jD1
aij!kj!

�1
kk xk D ıik!!

�1
kk xk :

Hence, the functional equation (3.11) can be transformed into

f
�
dk!!

�1
kk xk

� D bkf
�
!!�1

kk xk
�
;

since f .0/ D 0. Putting x D !!�1
kk
xk ends the proof. ut

As already introduced in Section 3.1, Rassias and Tabor [312] raised a question
concerning the stability of a generalized additive Cauchy functional inequality of
the form

�
�f .a1x C a2y C v/� b1f .x/ � b2f .y/ � w

�
� � �

�kxkp C kykq�; (3.12)

where a1a2b1b2 ¤ 0, � � 0, p; q 2 R, v and w are fixed points of E1 and E2,
respectively. Jung [162] partially answered this question as stated in the following
theorem.

Theorem 3.8. Assume that 0 < ja1 C a2j < 1, 0 < p; q � 1, and jb1 C b2j > 1. If
a function f W E1 ! E2 satisfies the inequality (3.12) for all x; y 2 E1, then there
exists a unique function A W E1 ! E2 which satisfies

A
�
.a1 C a2/x C v

� D .b1 C b2/A.x/

and

kf .x/ �A.x/k � M1 CM2kxkp CM3kxkq

for all x 2 E1, where M1, M2, and M3 are appropriate constants.

Proof. The functional inequality (3.12) can be transformed into

kf .a1x C a2y C v/� b1f .x/ � b2f .y/k � '.x; y/;

where '.x; y/ D kwk C �
�kxkp C kykq� for all x; y 2 E1. Since a11 D 1,

a12 D 0, a21 D 0, a22 D 1, and ! D !1 D !2 D 1, we have r D a1 C a2 and
B D b1 C b2. Therefore, using the triangle inequality for the norm and using the
condition 0 < p; q � 1, we get
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ksn.x/kt � ja1 C a2jtnkxkt C
n�1X

jD0
ja1 C a2jtjkvkt .a/

for t 2 fp; qg, since

sn.x/ D .a1 C a2/
nx C

n�1X

jD0
.a1 C a2/

j v:

It follows from .a/ and the given hypotheses that

1X

iD0
jb1 C b2j�i�1ksi .x/kt

� kxkt jb1 C b2j�1
1X

iD0

�ja1 C a2jt jb1 C b2j�1
�i

C kvkt jb1 C b2j�1
1X

iD0
jb1 C b2j�i

i�1X

jD0
ja1 C a2jtj

� c1kxkt C c2kvkt

for t 2 fp; qg, where c1 and c2 are given constants. Hence, we obtain

ˆ.x; y/ D
1X

iD0
jb1 C b2j�i�1'

�
si .x/; si .y/

�

D
1X

iD0
jb1 C b2j�i�1

�kwk C �ksi .x/kp C �ksi .y/kq
�

� M1 CM2kxkp CM3kykq ;

.b/

whereM1, M2, and M3 are appropriate constants. Therefore,

ˆ.x; y/ < 1:

From .a/ and .b/, it follows that

ˆ
�
sn.x/; sn.x/

� � M1 CM2ksn.x/kp CM3ksn.x/kq

� M1 CM2

0

@ja1 C a2jpnkxkp C
n�1X

jD0
ja1 C a2jpj kvkp

1

A

C M3

0

@ja1 C a2jqnkxkq C
n�1X

jD0
ja1 C a2jqj kvkq

1

A :
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Hence, we achieve

ˆ
�
sn.x/; sn.x/

� D o
�jb1 C b2jn

�
as n ! 1: .c/

In view of .b/, .c/, and Theorem 3.5, the assertions are true. ut

3.3 Functional Equation f .x C y/2 D .f .x/ C f .y//2

The functional equation f .xCy/2 D �
f .x/Cf .y/�2 may be regarded as a special

form of the functional equation

f .x C y/2 D af .x/f .y/ C bf .x/2 C cf .y/2 .a; b; c 2 C/ (3.13)

of which solutions and the Hyers–Ulam stability problem were proved by S.-M. Jung
[157].

Throughout this section, let E be a real normed space. We first describe the
solutions of the functional equation (3.13) briefly:

(i) The case of b ¤ 1 or c ¤ 1.
The function f W E ! C is a solution of the functional equation (3.13) with
b ¤ 1 or c ¤ 1 if and only if there exists a complex number ˛ such that
f .x/ D ˛ for all x 2 E , where ˛ D 0 for the case of aC b C c ¤ 1.

(ii) The case of a D �1 and b D c D 1.
The function f W E ! C is a solution of the functional equation

f .x C y/2 D �f .x/f .y/C f .x/2 C f .y/2

if and only if there exists a complex number ˛ such that f .x/ D ˛ for all
x 2 E .

(iii) The case of a 62 f�1; 2g and b D c D 1.
The function f .x/ � 0 .x 2 E/ is the unique solution of the functional equa-
tion

f .x C y/2 D af .x/f .y/C f .x/2 C f .y/2;

where a 62 f�1; 2g.
(iv) The case of a D 2 and b D c D 1.

In this case the functional equation (3.13) can be rewritten as

f .x C y/2 D �
f .x/C f .y/

�2
: (3.14)

In the following theorem, solutions of the functional equation (3.14) which are
continuous at a point will be studied (see [157]).
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Theorem 3.9. Let f W R ! C be a function which is continuous at 0. The function
f is a solution of the functional equation (3.14) if and only if f is linear, i.e., there
exists a complex number c such that f .x/ D cx for all x 2 R.

Proof. If we set x D y D 0 in (3.14), then we get f .0/ D 0. By putting y D �x in
(3.14) and using f .0/ D 0 we can show the oddness of f . Now, we will prove that

f .nx/ D nf .x/ .a/

for all integers n and any x 2 R. By putting y D x in (3.14) we get

f .2x/ D 2f .x/ or f .2x/ D �2f .x/: .b/

Replacing y in (3.14) with 2x yields

f .3x/2 D
(
9f .x/2 .if f .2x/ D 2f .x//;

f .x/2 .if f .2x/ D �2f .x//:
.c/

In view of (3.14) and .b/, it follows

f .4x/2 D �
f .2x/C f .2x/

�2 D 16f .x/2: .d /

On the other hand, replacing y in (3.14) with 3x and using .c/, we obtain

f .4x/2 D

8
ˆ̂
<

ˆ̂
:

16f .x/2 .if f .3x/ D 3f .x//;

4f .x/2 .if f .3x/ D �3f .x/ or f .3x/ D f .x//;

0 .if f .3x/ D �f .x//:
.e/

Comparing .d/ with .e/ and taking .c/ into consideration, we get f .3x/ D 3f .x/.
Hence, it follows from .b/ and .c/ that

f .2x/ D 2f .x/:

Thus, .a/ holds true for n D 2. Assume that .a/ is true for all positive integers � n

(n � 2). Then, putting y D nx in (3.14) yields

f
�
.nC 1/x

� D .nC 1/f .x/ or f
�
.nC 1/x

� D �.nC 1/f .x/: .f /

Replacing y in (3.14) with .nC 1/x yields

f
�
.nC 2/x

�2 D
(
.nC 2/2f .x/2 .if f ..nC 1/x/ D .nC 1/f .x//;

n2f .x/2 .if f ..nC 1/x/ D �.nC 1/f .x//:
.g/
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On the other hand, by substituting 2x and nx for x and y in (3.14), respectively, and
by using induction hypothesis, it holds true that

f
�
.nC 2/x

�2 D .nC 2/2f .x/2: .h/

Comparing .g/ with .h/ and considering .f / yield

f
�
.nC 1/x

� D .nC 1/f .x/;

which ends the proof of .a/.
By substituting x=n (n ¤ 0) for x in .a/, we achieve

f .x=n/ D .1=n/f .x/: .i/

Hence, by .a/ and .i/, we have

f .qx/ D qf .x/

for every rational number q. If we put x D 1 in the above equation, then we attain

f .q/ D f .1/q: .j /

The continuity of f at 0, together with (3.14), implies that f .x/2 is continuous at
each x 2 R. From this fact and .j /, it follows that

f .r/ D f .1/r or f .r/ D �f .1/r .k/

for all irrational numbers r . Assume that f satisfies f .r/ D �f .1/r for some
irrational number r . Then, by .k/, it holds true that

f .q C r/ D f .1/.q C r/ or f .q C r/ D �f .1/.q C r/ .l/

for any rational number q ¤ 0. On the other hand, by (3.14), .j /, and the assump-
tion, we reach

f .q C r/2 D f .1/2.q � r/2:
By comparing this equation with .l/, we conclude that f .1/ D 0. Hence, if f .r/ D
�f .1/r holds true for some irrational number r , then it follows that

f .x/ D 0

for all x 2 R. Assume now that f .r/ D f .1/r for all irrational numbers r . Then
this assumption, together with .j /, yields

f .x/ D f .1/x

for all x 2 R.
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Conversely, every complex-valued function f defined on R of the form f .x/Dcx
with a constant c satisfies the functional equation (3.14). ut
Remark. If f is a real-valued function, the functional equation (3.14) is equiva-
lent to

jf .x C y/j D jf .x/C f .y/j for all x; y 2 E:
Since .R; j � j/ is a strictly normed space, according to F. Skof [333], the function f
is a solution of the functional equation (3.14) if and only if f is an additive function.

Using ideas from Theorems 2.3 and 2.5, Jung [157] proved the Hyers–Ulam
stability of the functional equation (3.14).

Theorem 3.10. Suppose f W E ! R is a function which satisfies

ˇ
ˇ
ˇf .x C y/2 � �

f .x/C f .y/
�2ˇˇ
ˇ � ı (3.15)

for some ı � 0 and for any x; y 2 E . Then there exists an additive function A W
E ! R which satisfies

ˇ
ˇf .x/2 � A.x/2

ˇ
ˇ � .1=3/ı (3.16)

for all x 2 E . Moreover, if A0 W E ! R is another additive function which satisfies
(3.16), then

A.x/2 D A0.x/2 (3.17)

for any x 2 E .

Proof. By using induction on n we first prove that

ˇ
ˇf
�
2nx

�2 � �
2nf .x/

�2ˇˇ � ı

n�1X

iD0
22i .a/

for any n 2 N . For n D 1, it is trivial by (3.15). Assume that .a/ holds true for
some n. Then, by substituting 2nx for x and y in (3.15) and by using .a/, we show

ˇ
ˇf
�
2nC1x

�2 � �
2nC1f .x/

�2ˇˇ � ˇ
ˇf
�
2nC1x

�2 � �
2f .2nx/

�2ˇˇ

C 22
ˇ
ˇf .2nx/2 � �

2nf .x/
�2ˇˇ

� ı C 22ı

n�1X

iD0
22i

� ı

nX

iD0
22i ;

which ends the proof of .a/.
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Dividing both sides in .a/ by 22n yields

ˇ̌
2�2nf .2nx/2 � f .x/2

ˇ̌ � .1=3/ı .b/

for all x 2 E and n 2 N . It follows from .b/ that, for n � m > 0,

ˇ
ˇ�2�nf .2nx/

�2 � �
2�mf .2mx/

�2ˇˇ

D 2�2m ˇ̌�2�.n�m/f .2n�m2mx/
�2 � f .2mx/2

ˇ̌

� 2�2m.1=3/ı:

Hence, it holds true that

ˇ
ˇ�2�nf .2nx/

�2 � �
2�mf .2mx/

�2ˇˇ ! 0 as m ! 1: .c/

For each x 2 E we define

IC
x D ˚

n 2 N j f .2nx/ � 0
�

and I�
x D ˚

n 2 N j f .2nx/ < 0�:

In view of .c/, we know that if IC
x or I�

x is an infinite set, then the sequence
f2�nf .2nx/g

n2IC

x
or f2�nf .2nx/gn2I�

x
is a Cauchy sequence, respectively. Now,

let us define

A.x/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

lim 2�nf .2nx/ .if IC
x is infinite/;

n ! 1

n 2 I
C

x

lim 2�nf .2nx/ .otherwise/:
n ! 1

n 2 I�

x

It is clear that if both IC
x and I�

x are infinite sets, then

A.x/ D � lim
n ! 1

n 2 I�

x

2�nf .2nx/: .d/

The definition of A and .b/ imply the validity of (3.16).
Let x; y 2 E be given arbitrarily. It is not difficult to prove that there is at least

one infinite set among the sets IC
x \IC

y \IC
xCy , IC

x \IC
y \I�

xCy , : : :, I�
x \I�

y \I�
xCy .

We may choose such an infinite set and denote it by I . Let n 2 I be given. Replacing
x and y in (3.15) with 2nx and 2ny, respectively, and then dividing the resulting
inequality by 22n, we obtain

ˇ
ˇ�2�nf .2n.x C y//

�2 � �
2�nf .2nx/C 2�nf .2ny/

�2ˇˇ � 2�2nı: .e/
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By letting n ! 1 through I in .e/ and taking .d/ into consideration, we
immediately achieve

A.x C y/2 D �
A.x/C A.y/

�2
or A.x C y/2 D �

A.x/ �A.y/�2 .f /

for all x; y 2 E . The second equality in .f / can take place, for example, when both
IC
y and I�

y are infinite sets and I D IC
x \ I�

y \ IC
xCy for some x; y 2 E , because

.e/ and I D IC
x \ I�

y \ IC
xCy lead to

lim
n ! 1

n 2 I

2�nf
�
2n.x C y/

� D lim
n ! 1

n 2 I
C

xCy

2�nf
�
2n.x C y/

� D A.x C y/;

lim
n ! 1

n 2 I

2�nf .2nx/ D lim
n ! 1

n 2 I
C

x

2�nf .2nx/ D A.x/;

and

lim
n ! 1

n 2 I

2�nf .2ny/ D lim
n ! 1

n 2 I�

y

2�nf .2ny/ D �A.y/:

A.x/ � 0 (x 2 E) is not only the unique solution of the second functional equation
but also a solution of the first equation in .f /. Hence, it holds true that

A.x C y/2 D �
A.x/C A.y/

�2
or jA.x C y/j D jA.x/CA.y/j

for all x; y 2 E . According to the above Remark, A is an additive function.
Now, suppose A0 W E ! R is another additive function which satisfies (3.16).

Since A and A0 are additive functions, it is clear that

A.nx/ D nA.x/ and A0.nx/ D nA0.x/

for all n 2 N and any x 2 E . Hence, by (3.16), we get

ˇ
ˇA.x/2 �A0.x/2

ˇ
ˇ D n�2ˇˇA.nx/2 � A0.nx/2

ˇ
ˇ

� n�2�jA.nx/2 � f .nx/2j C jf .nx/2 �A0.nx/2j�

� .2=3/n�2ı
! 0 as n ! 1;

which ends the proof of (3.17). ut



Chapter 4
Hosszú’s Functional Equation

In 1967, M. Hosszú introduced the functional equation f .x C y � xy/ D f .x/C
f .y/ � f .xy/ in a presentation at a meeting on functional equations held in
Zakopane, Poland. In honor of M. Hosszú, this equation is called Hosszú’s func-
tional equation. As one can easily see, Hosszú’s functional equation is a kind of
generalized form of the additive Cauchy functional equation. In Section 4.1, it will
be proved that Hosszú’s equation is stable in the sense of C. Borelli. We discuss
the Hyers–Ulam stability problem of Hosszú’s equation in Section 4.2. In Sec-
tion 4.3, Hosszú’s functional equation will be generalized, and the stability (in the
sense of Borelli) of the generalized equation will be proved. It is surprising that
Hosszú’s functional equation is not stable on the unit interval. It will be discussed in
Section 4.4. In the final section, we will survey the Hyers–Ulam stability of Hosszú’s
functional equation of Pexider type.

4.1 Stability in the Sense of Borelli

We have seen in Chapter 3 that the additive Cauchy functional equation can be
generalized in various forms. Hosszú’s functional equation

f .x C y � xy/ D f .x/C f .y/ � f .xy/ (4.1)

is the most famous among generalized forms of the additive Cauchy equation.
Hence, this equation will be surveyed separately from Chapter 3. Every solution
of Hosszú’s functional equation is said to be a Hosszú function. A function f is
called affine if it can be represented by f .x/ D A.x/ C c, where A is an addi-
tive function and c is a constant. According to T. M. K. Davison [92], the function
f W K ! G is a Hosszú function if and only if it is affine, where K is a field with
at least five elements and G is an abelian group.

Throughout this section, let f W R ! R be a function, and let g and h denote the
odd and the even part of a corresponding function f , respectively.

We now start with the proof of Borelli’s theorem concerning the stability of
Hosszú’s functional equation (see [23]).

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 4, c� Springer Science+Business Media, LLC 2011
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Lemma 4.1. If the inequality

ˇ
ˇh.x C y � xy/ � h.x/ � h.y/C h.xy/

ˇ
ˇ � " (4.2)

holds true for some " � 0 and for all x; y 2 R, then jh.x/j � 2" C jh.1/j for all
x 2 R.

Proof. If we replace x and y in (4.2) with �x and �y, respectively, we get

ˇ
ˇh.�x � y � xy/ � h.x/ � h.y/C h.xy/

ˇ
ˇ � ";

since h is even. Thus,

jh.x C y � xy/ � h.�x � y � xy/j
� jh.x C y � xy/ � h.x/ � h.y/C h.xy/j

C j � h.�x � y � xy/C h.x/C h.y/ � h.xy/j
� 2"

and setting y D �1 yield jh.2x�1/�h.1/j � 2". 2x�1 spans the whole R, which
ends the proof. ut

C. Borelli [23] also provided the following lemmas.

Lemma 4.2. Let a function f W R ! R satisfy the inequality

ˇ
ˇf .x C y � xy/ � f .x/ � f .y/C f .xy/

ˇ
ˇ � ı (4.3)

for some ı� 0 and for all x; y 2 R, and let the even part h of f satisfy the in-
equality (4.2) for some " � 0 and for all x; y 2 R. Define � D ı C " and
� D max

˚
2�; jg.2/ � 2g.1/j�. Then the odd part g of f can be represented by

g.x/ D p.x/ C s.x/ for any real number x, where p and s are odd functions, p
satisfies the equation p.2x/ D 2p.x/, and js.x/j � � for all x 2 R.

Proof. It is obvious that

ˇ
ˇg.x C y � xy/ � g.x/ � g.y/C g.xy/

ˇ
ˇ � �

and ˇ
ˇg.x � y C xy/� g.x/ � g.�y/C g.�xy/ˇˇ � �:

The oddness of g implies that

ˇ
ˇg.x � y C xy/ � g.x/C g.y/ � g.xy/

ˇ
ˇ � �;
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therefore

ˇ
ˇg.x C y � xy/C g.x � y C xy/ � 2g.x/

ˇ
ˇ

� ˇ
ˇg.x C y � xy/ � g.x/ � g.y/C g.xy/

ˇ
ˇ

C ˇ
ˇg.x � y C xy/ � g.x/C g.y/ � g.xy/

ˇ
ˇ

� 2�:

Taking y D x=.1 � x/ for x ¤ 1 yields

jg.2x/C g.0/ � 2g.x/j D jg.2x/ � 2g.x/j � 2�;

for x ¤ 1, and so
jg.2x/� 2g.x/j � �

for all x 2 R. Using induction on n we can verify that

j2�ng.2nx/ � g.x/j �
nX

kD1
2�k� � � .a/

for all x 2 R and n 2 N . For m > n > 0 we get

j2�mg.2mx/ � 2�ng.2nx/j D 2�nˇˇ2�.m�n/g.2m�n2nx/ � g.2nx/
ˇ
ˇ

� 2�n�
! 0 as n ! 1:

Hence, the sequence f2�ng.2nx/g is a Cauchy sequence. Let us define

p.x/ D lim
n!1 2�ng.2nx/

for all x 2 R. We can then conclude that

p.2x/ D lim
n!1 2�ng.2n2x/ D 2 lim

n!1 2�n�1g
�
2nC1x

� D 2p.x/;

p is odd and by .a/
jg.x/ � p.x/j D js.x/j � �

for all x 2 R. ut
Lemma 4.3. Let a function f W R ! R satisfy the inequality (4.3) for some ı � 0

and for all x; y 2 R. If the even part h of f satisfies the inequality (4.2) for some
" � 0 and for all x; y 2 R, then the function p W R ! R defined in Lemma 4.2 is
additive.
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Proof. From the preceding lemma it follows that

ˇ
ˇp.x C y � xy/ � p.x/ � p.y/C p.xy/

ˇ
ˇ

� ˇ̌
g.x C y � xy/ � g.x/ � g.y/C g.xy/

ˇ̌

C ˇ
ˇ � s.x C y � xy/C s.x/C s.y/ � s.xy/

ˇ
ˇ

� �C 4�;

for all x; y 2 R, and hence

ˇ
ˇp.�x � y � xy/ � p.�x/ � p.�y/C p.xy/

ˇ
ˇ � �C 4�:

Since p is odd, from the last inequality we get

ˇ̌� p.x C y C xy/C p.x/C p.y/C p.xy/
ˇ̌ � �C 4�:

These inequalities and the 2-homogeneity of p (see Lemma 4.2) imply

ˇ
ˇp.x C y C xy/ � p.x C y � xy/ � p.2xy/ˇˇ

D ˇ
ˇp.x C y � xy/� p.x C y C xy/C 2p.xy/

ˇ
ˇ

� ˇ
ˇp.x C y � xy/ � p.x/ � p.y/C p.xy/

ˇ
ˇ

C ˇ̌ � p.x C y C xy/C p.x/C p.y/C p.xy/
ˇ̌

� 2�C 8�:

In the last inequality we make the following change of variables:

u D �x � y C xy and v D �2xy: .a/

Since for all u 2 R and v � 0 there exists at least one pair .x; y/ satisfying .a/, we
have

jp.u C v/� p.u/� p.v/j � 2�C 8�

for all u 2 R and v � 0. According to Lemma 2.27, there exists an additive function
A W R ! R such that

jp.u/�A.u/j � 2�C 8�

for all u � 0. Indeed, we have A D p: Assume there exists w � 0 such that
A.w/ ¤ p.w/. By the properties of A and p we have

jp.2nw/ �A.2nw/j D 2njp.w/ �A.w/j � 2�C 8�;

for all n 2 N , which leads to a contradiction. Thus, p is additive on Œ0;1/. Since it
is odd, p is additive on the whole R. ut

We now introduce the main theorem of Borelli (see [23]).
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Theorem 4.4 (Borelli). Let a function f W R ! R satisfy the inequality (4.3) for
some ı � 0 and for all x; y 2 R. There exists an additive function A W R ! R such
that the difference f �A is bounded if and only if the even part h of f satisfies the
inequality (4.2) for some " � 0 and for all x; y 2 R.

Proof. Assume that h satisfies (4.2). By the previous lemmas we have

f .x/ D g.x/C h.x/ D p.x/C s.x/C h.x/;

where p is additive and js.x/ C h.x/j � � C 2" C jh.1/j, i.e., f differs from a
solution of Hosszú’s equation by a bounded function.

Conversely, assume f .x/ D A.x/Cb.x/, where A is additive and b is bounded.
We then have

h.x/ D .1=2/
�
f .x/C f .�x/� D .1=2/

�
b.x/C b.�x/�;

so h satisfies (4.2). ut
Borelli raised a question as to whether one can also prove the Hyers–Ulam sta-

bility for Hosszú’s functional equation. Section 4.2 is wholly devoted to the answer
to this question of Borelli.

4.2 Hyers–Ulam Stability

L. Losonczi affirmatively answered the question of Borelli. More precisely, he
proved in his paper [238] that Hosszú’s functional equation (4.1) is stable in the
sense of Hyers and Ulam.

Theorem 4.5 (Losonczi). Let E be a Banach space and suppose that a function
f W R ! E satisfies the functional inequality (4.3) for some ı � 0 and for all
x; y 2 R. Then there exist a unique additive function A W R ! E and a unique
constant b 2 E such that

kf .x/ � A.x/ � bk � 20ı

for all x 2 R.

Proof. Let us define

.Hf /.x; y/ D f .x C y � xy/ � f .x/ � f .y/C f .xy/

and

.Gf /.x; y/ D f .xy/ � f .x/ � f .y/
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for all x; y 2 R. Then we have

.Gf /.xy; z/C .Gf /.x; y/ � .Gf /.x; yz/ � .Gf /.y; z/ D 0 .a/

for all x; y 2 R. Since

f .x C y � xy/ D .Hf /.x; y/ � .Gf /.x; y/;

it follows from (4.3) and .a/ that

kf .xy C z � xyz/C f .x C y � xy/ � f .x C yz � xyz/ � f .y C z � yz/k
D k.Hf /.xy; z/C .Hf /.x; y/ � .Hf /.x; yz/ � .Hf /.y; z/k
� 4ı:

Substituting in the last expression

�3 D y C z � yz; .b/

u � 3 D xy C z � xyz; .c/

and

v � 3 D x C y � xy .d/

for x; y; z 2 R yield

kf .u � 3/C f .v � 3/� f .u C v � 3/� f .�3/k � 4ı .e/

for .u; v/ 2 D, where D is the set of all pairs .u; v/ 2 R2 for which the system
.b/–.d/ has at least one real solution triple x, y, z.

It is clear from .b/ that y ¤ 1. Thus, from .b/ and .d/ we get

x D 1C v � 4

1 � y
; z D 1 � 4

1 � y :

Substituting these into .c/, we obtain after a simple calculation that

uy2 � 2.u C 2v � 8/y C u D 0: .f /

The image of the set
˚
.x; y; 1 � 4=.1 � y// j x 2 R; y ¤ 1

�
under the transfor-

mations .b/–.d/ is the set of all pairs .u; v/ for which equation .f / has at least one
real solution y ¤ 1.

If u D 0, v 2 R, then .f / has at least one real solution y ¤ 1, namely, y D 0 if
v ¤ 4 and y D arbitrary real if v D 4.
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If u ¤ 0, then y D 1 is a solution of .f / exactly if v D 4. Thus, .f / has at
least one real solution y ¤ 1 if and only if v ¤ 4 and the discriminant of .f / is
nonnegative, i.e., if 4.u C 2v � 8/2 � 4u2 � 0 or .v � 4/.u C v � 4/ � 0. We can
write these conditions in the form

�
u C v � 4 .for v > 4/;
u C v � 4 .for v < 4/:

.g/

In summary, we obtained that

D D ˚
.u; v/ 2 R2 j v ¤ 4 and .g/ holds true

�
:

From .e/ with F defined by F.u/ D f .u � 3/� f .�3/ .u 2 R/, we get

kF.u C v/ � F.u/� F.v/k � 4ı .h/

for all .u; v/ 2 D. Since the left-hand side of .h/ is symmetric in u and v, .h/ also
holds true on

D� D ˚
.u; v/ j .u; v/ 2 D or .v; u/ 2 D�:

It is easy to check that D� D R2n4, where 4 is the triangle

4 D ˚
.u; v/ j u; v 2 .0; 4�; u C v 2 .4; 8��:

According to Theorem 2.31, there exists a unique additive function A W R ! E

such that

kF.u/�A.u/k � 20ı:

Using the definition of F we get from the last inequality with x D u�3,A.x�3/ D
A.x/ �A.3/, and b D A.3/C f .�3/ that

kf .x/ � A.x/ � bk � 20ı

for all x 2 R. ut
Later, Theorem 4.5 was generalized by P. Găvruta [117] and further by

P. Volkmann [357]:

Theorem 4.6. Let E be a Banach space. Suppose a function f W R ! E satisfies
the functional inequality (4.3) for some ı � 0 and for all x; y 2 R. Then there exist
a unique additive function A W R ! E and a unique constant b 2 E such that

kf .x/ �A.x/ � bk � 4ı

for all x 2 R.
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4.3 Generalized Hosszú’s Functional Equation

In Chapter 3, we have seen various generalizations of the additive Cauchy functional
equation. The following functional equation

f .x C y C qxy/ D f .x/C f .y/C qf .xy/

can be regarded as a generalized form of Hosszú’s equation (4.1). A function
f W R ! R will be called a solution of the generalized q-Hosszú’s equation if and
only if it satisfies

.Hqf /.x; y/ D f .x C y C qxy/ � f .x/ � f .y/ � qf .xy/ D 0

for all x; y 2 R.
According to a paper [213] of Pl. Kannappan and P. K. Sahoo, every solution

f W R ! R of the generalized q-Hosszú’s equation is given by

(
f .x/ D A.x/ .for q 2 Qnf�1; 0g/;
f .x/ D A.x/C c .for q D �1/;

where A W R ! R is an additive function and c is a real constant.
In this section, the stability problem of the generalized Hosszú’s equation will

be discussed (in the sense of Borelli) for the case of q 2 Qnf�1=2; 0; 1=2g. We
denote by g and h the odd and even part of a corresponding function f W R ! R,
respectively.

We will now start this section with the following three lemmas presented by
S.-M. Jung and Y.-H. Kye [191].

Lemma 4.7. If h satisfies the functional inequality j.Hqh/.x; y/j � " for all x; y 2
R and for some " > 0, then

jh.x/j � 2"C jh.1=q/j

for each x 2 R.

Proof. Since h is the even part of f , by the hypothesis we have

ˇ
ˇh.x C y C qxy/ � h.x/ � h.y/ � qh.xy/

ˇ
ˇ � ";

ˇ
ˇh.�x � y C qxy/ � h.x/ � h.y/ � qh.xy/

ˇ
ˇ � "

.a/

for all x; y 2 R. It follows from .a/ that

ˇ
ˇh.x C y C qxy/ � h.�x � y C qxy/

ˇ
ˇ � 2"
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for all x; y 2 R. Replacing x and y with .1=2/.u � 1=q/ and 1=q, respectively, in
the last inequality, we obtain

jh.u/� h.1=q/j � 2":

Since u can take every real number as its value, the assertion is true. ut
Lemma 4.8. Let " and ı be given positive numbers. Assume that a function
f W R ! R and its even part h satisfy the inequalities

j.Hqf /.x; y/j � ı and j.Hqh/.x; y/j � " (4.4)

for all x; y 2 R. Furthermore, suppose there exists a  > 0 such that the odd part
g satisfies

max
˚
.1=n/jg.n=q/� ng.1=q/j j n 2 N

�
< : (4.5)

It then holds true that

g.x/ D g1.x/C g2.x/;

where g1 and g2 are odd functions such that g1.2qx/ D 2qg1.x/ for each x 2 R,
and g2 is bounded.

The condition (4.5) is a kind of approximate homogeneity (additivity) of g which
is much weaker than an ordinary approximate homogeneity.

Proof. It follows from j.Hqf /.x; y/j D j.Hqg/.x; y/C .Hqh/.x; y/j that

j.Hqg/.x; y/j � ı C " .a/

for all x; y 2 R. Let 
 D maxfı C "; g. We now assert that

jg.nx/ � ng.x/j � jnj
 .b/

for any real x and every integer n ¤ 0.
First, we assume that n is a natural number. The assertion .b/ is true for n D 1.

By .a/, we get

j.Hqg/.x;�y/j D ˇ
ˇg.x � y � qxy/ � g.x/C g.y/C qg.xy/

ˇ
ˇ � 
: .c/

According to .a/ and .c/, we obtain

ˇ
ˇg.x C y C qxy/C g.x � y � qxy/ � 2g.x/ˇˇ � 2
: .d/
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Substituting x=.1C qx/, x ¤ �1=q, for y in .d/ yields

jg.2x/� 2g.x/j � 2
;

since g.0/ D 0. Hence, by (4.5), jg.2x/� 2g.x/j � 2
 for all x 2 R.
Assume that jg.nx/ � ng.x/j � n
 for n 2 f1; : : : ; mg .m � 2/ as induction

hypothesis. Then, replacing y in .d/ with mx=.1C qx/, x ¤ �1=q, yields

ˇ
ˇg
�
.mC 1/x

� � g
�
.m � 1/x� � 2g.x/

ˇ
ˇ

D ˇ
ˇg
�
.mC 1/x

� � .mC 1/g.x/ � g
�
.m � 1/x

�C .m � 1/g.x/ˇˇ
� 2
;

and hence
ˇ
ˇg
�
.mC 1/x

� � .mC 1/g.x/
ˇ
ˇ � .mC 1/
:

Thus, it holds true that jg.nx/ � ng.x/j � n
 for all x 2 R and any n 2 N .
Now, it is obvious that the assertion .b/ is also true for any negative integer

n, since g is an odd function. Let m be any nonzero integer. It then follows from
.b/ that

jg.mx/ �mg.x/j � jmj
 .e/

for all x 2 R. Dividing by jnj both sides of .e/, we have

ˇ
ˇ.1=n/g.mx/ � .m=n/g.x/

ˇ
ˇ � �jmj=jnj�
: .f /

Replacing x with .m=n/x and dividing by jnj both sides of .b/ yield

ˇ
ˇ.1=n/g.mx/ � g

�
.m=n/x

�ˇˇ � 
 .g/

for all real x and nonzero integersm and n. By using .f / and .g/, we conclude that
for all x 2 R and nonzero integersm and n

ˇ
ˇg
�
.m=n/x

� � .m=n/g.x/
ˇ
ˇ � �jmj=jnj C 1

�

: .h/

Now, for any real x, let

g1.x/ D
8
<

:

lim
n!1.2q/

�ng
�
.2q/nx

�
.if jqj > 1=2/;

lim
n!1.2q/

ng
�
.2q/�nx

�
.if jqj < 1=2/:
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By using .h/, we show that if jqj > 1=2, then f.2q/�ng..2q/nx/g is a Cauchy
sequence for each real x:

ˇ
ˇ.2q/�ng

�
.2q/nx

� � .2q/�mg
�
.2q/mx

�ˇˇ

D j2qj�nˇˇg�.2q/n�m.2q/mx
� � .2q/n�mg

�
.2q/mx

�ˇˇ

� j2qj�n�j2qjn�m C 1
�



! 0 as m; n ! 1:

Analogously, the sequence f.2q/ng..2q/�nx/g is also a Cauchy sequence, when
jqj < 1=2. Thus, g1.x/ exists for any x 2 R. In view of the definitions of g1 and g2
we conclude that g1.2qx/ D 2qg1.x/ for each real x, and g1, g2 are odd functions,
and g2 is bounded, since it follows from .h/ that

jg2.x/j D jg.x/ � g1.x/j � 
 .i/

for all x 2 R. ut
Lemma 4.9. Let " and ı be given positive numbers. Suppose a function f W R ! R
and its even part h satisfy the inequalities in (4.4) for all x; y 2 R. Furthermore,
assume that there exists a  > 0 satisfying the condition (4.5). Then, the function g1
defined in Lemma 4.8 is additive on R.

Proof. Set 
 D maxfı C "; g. It follows from .a/ and .i/ in the proof of Lemma
4.8 that

j.Hqg1/.x; y/j D j.Hqg/.x; y/ � .Hqg2/.x; y/j
� j.Hqg/.x; y/j C j.Hqg2/.x; y/j
� �jqj C 4

�

 (a)

for all x; y 2 R. Therefore, we also have

ˇ
ˇ.Hqg1/.�x;�y/

ˇ
ˇ � �jqj C 4

�

: .b/

By using .a/ and .b/, we obtain

ˇ̌
g1.x C y C qxy/C g1.�x � y C qxy/ � 2qg1.xy/

ˇ̌

D ˇ
ˇg1.x C y C qxy/ � g1.x C y � qxy/ � g1.2qxy/

ˇ
ˇ

� 2
�jqj C 4

�

 (c)

for all x; y 2 R, since g1 is odd and g1.2qx/ D 2qg1.x/.
For given u and v, consider a system of the following equations,

x C y � qxy D u and 2qxy D v: .d /
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If we assume y ¤ 0, it follows from .d/ that

y D q.2u C v/˙p
q2.2u C v/2 � 8qv

4q
:

Hence, there exists at least one pair .x; y/ satisfying .d/ either for all u 2 R and all
v < 0 (when q > 0) or for all u 2 R and all v > 0 (when q < 0). Thus, by using .c/
and .d/, we have

ˇ
ˇg1.u C v/� g1.u/� g1.v/

ˇ
ˇ � 2

�jqj C 4
�

 .e/

either for all u; v < 0 (and for q > 0) or for all u; v > 0 (and for q < 0.)
For the case when u; v < 0, q > 1=2, and when n is an arbitrary natural number,

we get

j2qjnˇˇg1.u C v/� g1.u/� g1.v/
ˇ
ˇ � 2

�jqj C 4
�



by substituting .2q/nu and .2q/nv for u and v in .e/, respectively, and using Lemma
4.8. Similarly, if u; v < 0, 0 < q < 1=2, and if n is a natural number, we replace u
and v in .e/ with .2q/�nu and .2q/�nv, respectively. Then

j2qj�nˇˇg1.u C v/� g1.u/� g1.v/
ˇ
ˇ � 2

�jqj C 4
�

;

since Lemma 4.8 also implies g1
�
.2q/�1x

� D .2q/�1g1.x/. These together imply

that if q > 0, then

g1.u C v/ D g1.u/C g1.v/

for all u; v < 0.
When q < 0, we analogously obtain the same equation for all u; v > 0. However,

the fact that g1 is odd implies that g1 is additive on the whole R. ut
Now, we introduce the main theorem of this section proved by Jung and Kye

[191]. This theorem says that the generalized Hosszú’s equation is stable in the
sense of Hyers, Ulam, and Borelli.

Theorem 4.10. Suppose q 62 f�1=2; 0; 1=2g is a fixed rational number. Let ı > 0

be given and let f W R ! R be a function satisfying the first inequality in (4.4) for
all x; y 2 R. Then there exists an additive function A W R ! R such that f � A

is bounded if and only if there exist positive constants " and  such that the second
inequality in (4.4) and the condition (4.5) hold true for all x; y 2 R.

Proof. First, assume that j.Hqf /.x; y/j � ı and j.Hqh/.x; y/j � " for all x; y 2
R. Moreover, suppose there exists a  > 0 such that g satisfies the condition (4.5).
From the above lemmas and .i/ in the proof of Lemma 4.8, we obtain

f .x/ D g.x/C h.x/ D g1.x/C g2.x/C h.x/;

where g1 is additive and jf .x/�g1.x/j D jg2.x/Ch.x/j � 
C 2"C jh.1=q/j for
all x 2 R.
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Conversely, assume that f .x/ D a.x/ C b.x/, where a is additive and b is
bounded. Then

h.x/ D .1=2/
�
f .x/C f .�x/� D .1=2/

�
b.x/C b.�x/�:

Hence, j.Hqh/.x; y/j is bounded. Moreover, we have

g.x/ D .1=2/
�
f .x/ � f .�x/� D a.x/C .1=2/

�
b.x/ � b.�x/�

and

.1=n/
ˇ
ˇg.n=q/ � ng.1=q/

ˇ
ˇ

D �
1=.2n/

�ˇˇb.n=q/� b.�n=q/� nb.1=q/C nb.�1=q/ˇˇ
� �

1=.2n/
�ˇˇb.n=q/� b.�n=q/ˇˇC .1=2/

ˇ
ˇb.1=q/� b.�1=q/ˇˇ:

Since b is assumed to be bounded, we can choose a  > 0 such that the condition
(4.5) is true. ut

It is not clear whether the generalized Hosszú’s equation is also stable in the
sense of Hyers, Ulam, and Borelli for the case when jqj D 1=2. Naturally, one can
raise a question as to whether the generalized Hosszú’s equation is stable in the
sense of Hyers and Ulam.

4.4 Hosszú’s Equation is not Stable on the Unit Interval

As we have seen in Theorem 2.30, the additive Cauchy equation is stable on vari-
ous bounded intervals. However, Hosszú’s functional equation is not stable on the
unit interval, where we denote by the unit interval any interval with ends 0 and 1.
J. Tabor was the first person to prove this surprising fact. We first introduce a lemma
necessary to prove the main theorem of J. Tabor (ref. [348]).

Lemma 4.11. Let " � 0 be given. Suppose that a functionF W Œ0;1/ ! R satisfies
the inequalities

jF.x C y/� F.x/j � " (4.6)

for all x; y � 0 with x � y, and

jF.x/j � " (4.7)

for any x 2 Œ0; 6�. Let us define a function f W .0; 1/ ! R by

f .x/ D F
�
g.x/

�
;
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where

g.x/ D
� � lnx .for x 2 .0; 1=2�/;

� ln.1 � x/ .for x 2 Œ1=2; 1//:
Then, the inequality

ˇ̌
f .x C y � xy/ � f .x/ � f .y/C f .xy/

ˇ̌ � 4" (4.8)

holds true for every x; y 2 .0; 1/.
Proof. Let x; y 2 .0; 1/. Claim that

g.x C y � xy/ D g.x/C g.y/ for x � y � 1=2: .a/

If 1=2 � u < 1, then 0 < 1 � u � 1=2, and hence .1 � x/.1 � y/ < 1=2. Since
1 � x � y C xy D .1 � x/.1 � y/ < 1=2, we have x C y � xy > 1=2. Thus, we
have

g.x C y � xy/ D � ln
�
.1 � x/.1 � y/� D g.x/C g.y/

for x � y � 1=2.
Claim that

jg.xy/ � g.y/j � 3 for x � y and x � 1=2: .b/

Suppose that y � 1=2. If xy � 1=2, then 1=2 � y � 1=
p
2 and 1=4 � xy � 1=2,

thus

jg.xy/ � g.y/j � jg.xy/j C jg.y/j � ln 4C ˇ
ˇ ln

�
1 � 1=

p
2
�ˇˇ � 3:

If xy � 1=2, then

jg.xy/ � g.y/j D ˇ
ˇ ln.1 � xy/ � ln.1 � y/ˇˇ D

ˇ
ˇ
ˇ
ˇln
	
1C y

1 � x

1 � y

ˇˇ
ˇ
ˇ � 3:

Assume now that y < 1=2. Then,

jg.xy/ � g.y/j D j lnxy � lnyj � 3:

We claim that

jg.x C y � xy/ � g.x/j � 3 for x � y and y � 1=2: .c/

Let x� D 1 � x. Then, we have g.x/ D g.x�/. Making use of the equality

g.x C y � xy/ D g
�
.x�y�/�

� D g.x�y�/

and interchanging the role of x and y, we obtain .c/ from .b/.
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Let us show that
jF.x/ � F.y/j � 2" .d/

for any x; y � 0 with jx�yj � 3. The inequality .d/ follows from (4.7) in the case
when x; y 2 Œ0; 6�. In the other case, we may assume that x � y and x > 6. Then,
x � y � 3 < y and due to (4.6) we have

jF.x/ � F.y/j D jF.y C .x � y// � F.y/j � " � 2":

We will prove that (4.8) holds true. Without loss of generality, we may assume
that x � y. Suppose that x � y � 1=2. Then, by .a/, .b/, .d/, and (4.6), we get

ˇ̌
f .x C y � xy/ � f .x/ � f .y/C f .xy/

ˇ̌

D ˇ
ˇF
�
g.x C y � xy/

� � F
�
g.x/

� � F
�
g.y/

�C F
�
g.xy/

�ˇˇ

� ˇ̌
F
�
g.x C y � xy/

� � F
�
g.x/C g.y/

�ˇ̌

C ˇ
ˇF
�
g.x/C g.y/

� � F �g.x/�ˇˇC ˇ
ˇF
�
g.xy/

� � F
�
g.y/

�ˇˇ

and hence ˇ
ˇf .x C y � xy/ � f .x/ � f .y/C f .xy/

ˇ
ˇ � 4" .e/

for all x; y 2 .0; 1/ with x � y � 1=2. Suppose that x � 1=2 � y. It then follows
from .b/, .c/, and .d/ that

ˇ
ˇf .x C y � xy/ � f .x/ � f .y/C f .xy/

ˇ
ˇ

D ˇ
ˇF
�
g.x C y � xy/

� � F
�
g.x/

� � F
�
g.y/

�C F
�
g.xy/

�ˇˇ

� ˇ
ˇF
�
g.x C y � xy/� � F

�
g.x/

�ˇˇC ˇ
ˇF
�
g.xy/

� � F �g.y/�ˇˇ
� 4":

Suppose that y � x � 1=2. Then, it holds true that y� � x� � 1=2, and it follows
from .e/ that

ˇ
ˇf .x C y � xy/ � f .x/ � f .y/C f .xy/

ˇ
ˇ

D ˇ̌
f .x�y�/ � f .x�/ � f .y�/C f .x� C y� � x�y�/

ˇ̌

� 4";

since x C y � xy D .x�y�/�, x D .x�/�, y D .y�/�, xy D .x� C y� � x�y�/�
and f .x�/ D f .x/. ut

We are now able to prove the main theorem of J. Tabor [348].

Theorem 4.12 (Tabor). Let U be the unit interval. For every ı > 0, there exists a
function f W U ! R such that the inequality

ˇ̌
f .x C y � xy/ � f .x/ � f .y/C f .xy/

ˇ̌ � ı
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holds true for all x; y 2 U , but the range set of jf .x/ � H.x/j is not bounded on
U for each Hosszú functionH W U ! R.

Proof. Without loss of generality, we may assume that ı D 1. Let us define a func-
tion F W Œ0;1/ ! R by

F.x/ D .1=8/ ln.1C x/:

Then, F satisfies (4.6) and (4.7) with " D 1=4. Let

f .x/ D
�
F
�
g.x/

�
.for x 2 .0; 1//;

0 .for x 2 U n.0; 1//;

where g is the function defined in Lemma 4.11.
We show that

ˇ
ˇf .x C y � xy/ � f .x/ � f .y/C f .xy/

ˇ
ˇ � 1

for any x; y 2 U . If x D 0 or y D 0, then the inequality is obvious. For x; y 2
.0; 1/ the relation holds true by Lemma 4.11. We remark that an additive function
A W R ! R is either continuous or has a dense graph in R2 (see Theorems 2.1 and
2.2). Since f is continuous on .0; 1/ and

lim
x!0

f .x/ D lim
x!1

f .x/ D 1;

this implies that the range set of jf .x/�A.x/� cj is unbounded on .0; 1/ for every
additive function A W R ! R and every constant c. Therefore, the range set of
jf .x/ � H.x/j is unbounded on .0; 1/ for each solution H W U ! R of Hosszú’s
functional equation. ut

4.5 Hosszú’s Functional Equation of Pexider Type

In this section, we investigate the Hyers–Ulam stability of the functional equation

f .x C y � ˛xy/C g.xy/ D h.x/C k.y/: (4.9)

For ˛ D 1, the functional equation (4.9) is a pexiderized version of Hosszú’s func-
tional equation (4.1).

In the following theorem, we prove the Hyers–Ulam stability of the functional
equation (4.9) when ˛ ¤ 0 (ref. [321]).

Theorem 4.13. Let E be a Banach space and let ˛ be a nonzero real number. If
functions f; g; h; k W R ! E satisfy the inequality

kf .x C y � ˛xy/C g.xy/ � h.x/ � k.y/k � ı (4.10)
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for all x; y 2 R and for some ı > 0, then there exists a unique additive function
A W R ! E such that

kf .x/ � A.˛x/ � ak � 24ı;

kh.x/ �A.˛x/ � a � b1k � 25ı;

kk.x/ � A.˛x/ � a � b2k � 25ı;

kg.x/ � A.˛2x/ � a � b1 � b2k � 27ı

for all x 2 R, where a D f .1=˛/�A.1/, b1 D g.0/�k.0/, and b2 D g.0/�h.0/.
Proof. If we put y D 0 in (4.10), then

kf .x/ � h.x/C b1k � ı; .a/

where b1 D g.0/� k.0/. If we put x D 0 in (4.10), then

kf .y/ � k.y/C b2k � ı; .b/

where b2 D g.0/� h.0/. It follows from (4.10), .a/, and .b/ that

kf .x C y � ˛xy/C g.xy/ � f .x/ � f .y/ � b1 � b2k
� kf .x C y � ˛xy/C g.xy/ � h.x/ � k.y/k

C kh.x/ � f .x/ � b1k C kk.y/ � f .y/ � b2k
� 3ı (c)

for all x; y 2 R.
Since ˛ ¤ 0, if we put y D 1=˛ in .c/, then

kg.x=˛/ � f .x/ � b1 � b2k � 3ı .d/

for all x 2 R. If we replace x in .d/ with ˛x, then we have

kg.x/ � f .˛x/ � b1 � b2k � 3ı .e/

for all x 2 R. It then follows from .c/ and .e/ that

kf .x C y � ˛xy/C f .˛xy/ � f .x/ � f .y/k
� kf .x C y � ˛xy/C g.xy/ � f .x/ � f .y/ � b1 � b2k

C kf .˛xy/ � g.xy/C b1 C b2k
� 6ı (f )

for all x; y 2 R. If we replace x and y in .f / with x=˛ and y=˛, respectively, then
we get

��f
�
.1=˛/.x C y � xy/�C f

�
.1=˛/xy

� � f .x=˛/ � f .y=˛/
�� � 6ı .g/

for any x; y 2 R.
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Define a function  W R ! E by

 .x/ D f .x=˛/: .h/

In view of .g/ and .h/, we obtain

k .x C y � xy/C  .xy/ �  .x/ �  .y/k � 6ı

for all x; y 2 R.
According to Theorem 4.6, there exists a unique additive function A W R ! E

such that

k .x/ � A.x/ � ak � 24ı .i/

for all x 2 R, where a D  .1/ � A.1/. It thus follows from .h/ and .i/ that

kf .x/ � A.˛x/ � ak � 24ı .j /

for each x 2 R, where a D f .1=˛/ � A.1/.
Now, by .a/ and .j /, we get

kh.x/ � A.˛x/ � a � b1k � kh.x/ � f .x/ � b1k C kf .x/ � A.˛x/ � ak
� 25ı

for any x 2 R. Similarly, by .b/ and .j /, we obtain

kk.x/ � A.˛x/ � a � b2k � kk.x/ � f .x/ � b2k C kf .x/ �A.˛x/ � ak
� 25ı

for all x 2 R.
Finally, it follows from .e/ and .j / that

kg.x/ � A.˛2x/ � a � b1 � b2k
� kg.x/ � f .˛x/ � b1 � b2k C kf .˛x/ � A.˛2x/ � ak
� 27ı

for any x 2 R. ut



Chapter 5
Homogeneous Functional Equation

The functional equation f .yx/ D ykf .x/ (where k is a fixed real constant) is called
the homogeneous functional equation of degree k. In the case when k D 1 in the
above equation, the equation is simply called the homogeneous functional equation.
In Section 5.1, the Hyers–Ulam–Rassias stability of the homogeneous functional
equation of degree k between real Banach algebras will be proved in the case when k
is a positive integer. It will especially be proved that every “approximately” homoge-
neous function of degree k is a real homogeneous function of degree k. Section 5.2
deals with the superstability property of the homogeneous equation on a restricted
domain and an asymptotic behavior of the homogeneous functions. The stability
problem of the equation between vector spaces will be discussed in Section 5.3. In
the last section, we will deal with the Hyers–Ulam–Rassias stability of the homoge-
neous functional equation of Pexider type.

5.1 Homogeneous Equation Between Banach Algebras

By K we denote either R or C. An algebra over K is a vector space E over K in
which a multiplication is defined such that

(A1) x.yz/ D .xy/z for all x; y; z 2 E ,
(A2) x.y C z/ D xy C xz and .x C y/z D xz C yz for any x; y; z 2 E ,
(A3) ˛.xy/ D .˛x/y D x.˛y/ for all x; y 2 E and for all ˛ 2 K.

If an algebra E over K is a Banach space with a norm k � k that satisfies the
multiplicative inequality

(A4) kxyk � kxkkyk for every x; y 2 E ,

then E is called a real (or complex) Banach algebra. If xy D yx for all x; y 2 E ,
then the Banach algebra E is called commutative.

Throughout this section, let E be a real commutative Banach algebra with the
following additional properties:

(A40) kxyk D kxkkyk for every x; y 2 E ,

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 5, c� Springer Science+Business Media, LLC 2011
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(A5) E contains an identity e ¤ 0 such that ex D xe D x for each x 2 E ,
(A6) .E; �/ is a group.

It then follows from (A40) and (A5) that kek D 1. We will write x2, x3; : : :
instead of x � x, .x � x/ � x; : : : : By x�1 we will denote the multiplicative inverse
of x. Analogously, we write x�2, x�3; : : : instead of x�1 �x�1,

�
x�1 �x�1��x�1; : : : :

It is then obvious that

kx�nk D kxk�n

for any n 2 N .
Let k be a fixed positive integer. The equation

f .yx/ D ykf .x/

is said to be the homogeneous functional equation of degree k. Every solution of
the homogeneous functional equation of degree k is called a homogeneous function
of degree k. In the case of k D 1 in the above equation, the corresponding equa-
tion is simply called the homogeneous functional equation and each solution of the
homogeneous functional equation is called a homogeneous function.

It is well-known that every homogeneous function f W Œ0;1/ ! R of degree k
is of the form f .x/ D cxk , where c is a real constant (see [59]).

Let ' W E2 ! Œ0;1/ be a function such that

ˆz.x/ D
1X

jD0
kzk�.jC1/k'.zjx; z/ < 1 (5.1)

or

Q̂ z.x/ D
1X

jD0
kzkjk'�z�.jC1/x; z

�
< 1 (5.2)

for some z 2 E with kzk > 1 and for all x 2 E . Moreover, we assume that

�
ˆz.wnx/ D o

�kwknk� as n ! 1 .for ˆz.x/ < 1/;
Q̂ z.wnx/ D o

�kwknk� as n ! 1 .for Q̂ z.x/ < 1/
(5.3)

for some w 2 E and for all x 2 E .
S.-M. Jung [161] proved the following theorem concerning the Hyers–Ulam–

Rassias stability of the homogeneous functional equation of degree k.

Theorem 5.1. Let E be a real commutative Banach algebra with properties .A40/,
.A5/, and .A6/. If a function f W E ! E satisfies f .0/ D 0,

kf .yx/ � ykf .x/k � '.x; y/ (5.4)
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and

�
'.znx; y/ D o

�kf .znx/k� as n ! 1 .for ˆz.x/ < 1/;

'.z�nx; y/ D o
�kf .z�nx/k� as n ! 1 .for Q̂ z.x/ < 1/

(5.5)

for all x; y 2 Enf0g, then there exists a unique homogeneous functionH W E ! E

of degree k such that

kf .x/ �H.x/k �
�
ˆz.x/ .for ˆz.x/ < 1/;
Q̂ z.x/ .for Q̂ z.x/ < 1/

(5.6)

for all x 2 E .

Proof. We implement induction on n to prove

�
�y�nkf .ynx/ � f .x/�� �

n�1X

jD0
kyk�.jC1/k'.yjx; y/ .a/

for any n 2 N . In view of (5.4), the inequality .a/ is true for n D 1. If we assume
the validity of .a/ for some n > 0, then it follows from (5.4) and .a/ that

�
�y�.nC1/kf

�
ynC1x

� � f .x/
�
�

� kyk�.nC1/k��f .yynx/ � ykf .ynx/
�
�C �

�y�nkf .ynx/ � f .x/��

� kyk�.nC1/k'.ynx; y/C
n�1X

jD0
kyk�.jC1/k'.yjx; y/

D
nX

jD0
kyk�.jC1/k'.yjx; y/;

which ends the proof of .a/.
First, we consider the case when ˆz.x/ < 1 for some z 2 E with kzk > 1 and

for all x 2 E . Let n > m > 0. It then follows from .a/ and (5.1) that

�
�z�nkf .znx/ � z�mkf .zmx/

�
�

D kzk�mk��z�.n�m/kf .zn�mzmx/ � f .zmx/��

� kzk�mk
n�m�1X

jD0
kzk�.jC1/k'.zj zmx; z/

D
n�1X

jDm
kzk�.jC1/k'.zjx; z/

! 0 as m ! 1:
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Therefore, fz�nkf .znx/g is a Cauchy sequence. SinceE is a Banach space, we may
define

H.x/ D lim
n!1 z�nkf .znx/

for all x 2 E . The validity of the first inequality in (5.6) easily follows from the
definition of H , (5.1), and .a/.

Suppose x; y 2 Enf0g are given. It then follows from .a/ that

�
�y�kf .yznx/ � f .znx/�� � kyk�k'.znx; y/:

By using the last inequality and (5.5), we have

��f .znx/�1y�kf .yznx/ � e�� � kyk�kkf .znx/k�1'.znx; y/
! 0 as n ! 1:

Hence,

lim
n!1f .znx/�1y�kf .yznx/ D e: .b/

By the definition of H and .b/, we can show that

H.yx/ D lim
n!1 z�nkf .znyx/

D yk lim
n!1 z�nkf .znx/ lim

n!1f .znx/�1y�kf .znyx/

D ykH.x/

for all x; y 2 Enf0g. In addition, it is not difficult to show that H.0/ D 0. Hence,
we conclude that H.yx/ D ykH.x/ for all x; y 2 E .

Let H 0 W E ! E be another homogeneous function of degree k satisfying (5.6).
By using (5.6) and (5.3), we get

kH.x/ �H 0.x/k D kwk�nkkH.wnx/ �H 0.wnx/k
� 2kwk�nkˆz.w

nx/

! 0 as n ! 1:

Hence, we conclude that H.x/ D H 0.x/ for all x 2 E .
Now, we consider the case of Q̂ z.x/ < 1 for some z 2 E with kzk > 1 and for

all x 2 E . Replacing x in .a/ with y�nx and multiplying the resulting inequality
by kynkk, we get

kf .x/ � ynkf .y�nx/k �
n�1X

jD0
kykjk'�y�.jC1/x; y

�
.c/
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for any n 2 N . As in the first part, when n > m > 0, it follows from .c/ and (5.2)
that

kznkf .z�nx/ � zmkf .z�mx/k �
n�1X

jDm
kzkjk'�z�.jC1/x; z

�

! 0 as m ! 1:

We may now define

H.x/ D lim
n!1 znkf .z�nx/

for all x 2 E . Hence, the second inequality in (5.6) is obvious in view of .c/.
As in the first part, it follows from .a/ and (5.5) that

lim
n!1f .z�nx/�1y�kf .yz�nx/ D e .d/

for x; y 2 Enf0g. By using the definition of H and .d/, we get

H.yx/ D lim
n!1 znkf .z�nyx/

D yk lim
n!1 znkf .z�nx/ lim

n!1f .z�nx/�1y�kf .yz�nx/

D ykH.x/

for any x; y 2 E nf0g. Since f .0/ D 0, it also holds true that H.yx/ D ykH.x/

for x D 0 or y D 0. The uniqueness of H can be easily proved. ut
Jung [161] proved the following corollary.

Corollary 5.2. Let '.x; y/ D ıC�kxkakykb .ı � 0, � � 0, 0 � a < k, b � 0/ be
given in the functional inequality (5.4). If a function f W E ! E satisfies f .0/ D 0,
the inequality (5.4), and the first condition in (5.5) for all x; y 2 Enf0g, then there
exists a unique homogeneous functionH W E ! E of degree k such that

kf .x/ �H.x/k � ı
�kzkk � 1��1 C �kzkb�kzkk � kzka��1kxka

for any x; z 2 E for which kzk is sufficiently large. In particular, if ı � 0 and � D 0

in the definition of ', then f itself is a homogeneous function of degree k.

In Corollary 5.2, it was shown that the homogeneous equation of degree k is
superstable. More precisely, if E is a real commutative Banach algebra with addi-
tional properties .A40/, .A5/, and .A6/, if k is a positive integer, and if a function
f W E ! E satisfies f .0/ D 0, the inequality

kf .yx/ � ykf .x/k � ı;
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and the first condition in (5.5) for some ı � 0 and for all x; y; z 2 Enf0g for which
the value of kzk is sufficiently large, then f is a homogeneous function of degree k.
The superstability phenomenon of homogeneous functions will be summarized in
the following theorem.

Theorem 5.3. Let E be a real commutative Banach algebra with properties .A40/,
.A5/, and .A6/ and let k be a positive integer. If a function f W E ! E satisfies
f .0/ D 0 and the inequality

kf .yx/ � ykf .x/k � ı (5.7)

for some ı � 0 and for all x; y 2 Enf0g, and if f satisfies the condition

kf .znx/k ! 1 as n ! 1

for all x; z 2 E n f0g for which the value of kzk is sufficiently large, then f is
homogeneous of degree k.

The following corollary was provided in [161].

Corollary 5.4. Assume that '.x; y/ D �kxkakykb .� � 0, a > k, b � 0/ is given
in the functional inequality (5.4). If a function f W E ! E satisfies f .0/ D 0, the
inequality (5.4), and the second condition in (5.5) for all x; y 2 Enf0g, then there
exists a unique homogeneous functionH W E ! E of degree k such that

kf .x/ �H.x/k � �kzkb�kzka � kzkk��1kxka

for all x; z 2 E with kzk sufficiently large.

If '.x; y/ D �kxkkg�kyk� for some function g W Œ0;1/ ! Œ0;1/, then our
method to prove the stability for the homogeneous equation of degree k cannot be
applied. By modifying an example in [310] of Rassias and Šemrl, Jung introduced
a function f W R ! R which satisfies the inequality (5.4) and both conditions in
(5.5) with some ' and for which jf .x/j=jxjk (x ¤ 0) is unbounded (see [161]):

Example. Let k be a given positive integer. Let us define f .x/ D xk logjxj for
x ¤ 0 and f .0/ D 0. Then f satisfies the inequality (5.4) and both conditions in
(5.5) with '.x; y/ D jxjk jyjkˇˇ logjyjˇˇ (y ¤ 0) and '.x; 0/ D 0. On the other hand,
' satisfies neither (5.1) nor (5.2). In this case we can expect no analogy to the results
of Corollaries 5.2 and 5.4. In fact, it holds true that

lim
x!1 jf .x/ �H.x/j=jxjk D 1

for every homogeneous functionH W R ! R of degree k.
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5.2 Superstability on a Restricted Domain

Throughout this section, assume that E is a real commutative Banach algebra with
additional properties .A40/, .A5/, and .A6/, and suppose k is a fixed positive integer.
Moreover, let ı and  be given positive numbers.

In this section, we will apply Theorem 5.1 to the proof of the superstability of
the homogeneous equation of degree k on a restricted domain.

Lemma 5.5. Assume that a function f W E ! E satisfies f .0/ D 0 and the
inequality (5.7) for all x; y 2 E nf0g. If f .x/ ¤ 0 for any x 2 E nf0g, then f
satisfies the condition

kf .znx/k ! 1 as n ! 1
for all x; z 2 Enf0g with kzk sufficiently large.

Proof. Let x; y 2 Enf0g be given. By using induction on n, we prove that

kf .ynx/ � ynkf .x/k � ı
�
1C kykk C � � � C kyk.n�1/k� .a/

for all n 2 N . When n D 1, the inequality .a/ is an immediate consequence of
(5.7). If we assume the validity of .a/ for some n > 0, then it follows from .a/ and
(5.7) that

�
�f
�
ynC1x

� � y.nC1/kf .x/
�
�

� �
�f
�
ynC1x

� � ynkf .yx/��C kyknkkf .yx/ � ykf .x/k
� ı

�
1C kykk C � � � C kyknk�;

which completes the proof of .a/. It now follows from .a/ that

�
�y�nkf .ynx/ � f .x/�� � ı

�kyk�nk C kyk�.n�1/k C � � � C kyk�k�

� ı

kykk � 1 (b)

for any x; y 2 Enf0g with kyk > 1.
Assume now that f .x/ ¤ 0 for all x 2 Enf0g. If we choose a z 2 E such that

kzk > 1 and
ı

kzkk � 1
< kf .x/k

(if necessary, we replace z by mz for sufficiently largem 2 N), then it follows from
.b/ that

z�nkf .znx/ 6! 0 as n ! 1;

i.e., since kz�nkk D kzk�nk ! 0 as n ! 1, we have

kf .znx/k ! 1 as n ! 1;

which ends the proof. ut
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Now, let us define

S D ˚
.x; y/ 2 E2 j kxk <  and kyk < �

for some  > 0.
Jung [166] proved the superstability of the homogeneous functional equation of

degree k on a restricted domain.

Theorem 5.6. If a function f W E ! E satisfies f .0/ D 0 and the inequality (5.7)
for all .x; y/ 2 E2nS , and if f .x/ ¤ 0 for all x 2 Enf0g, then f is homogeneous
of degree k.

Proof. Assume that kxk<  and 0 < kyk<. Since y¤ 0, we can choose some
real number 
with 
�  and k
yk � . Then, it is true that .
�1x; 
y/; .
�1x; 
e/ 2
E2nS . It follows from the hypothesis that

kf .yx/ � ykf .x/k
D �
�f .yx/ � .
y/kf �
�1x

�C .
y/kf
�

�1x

� � ykf .x/��
� �
�f .yx/ � .
y/kf

�

�1x

���C kykk��f .x/ � .
e/kf
�

�1x

���

� ı
�
1C k

�
;

since yx D .
y/.
�1x/, x D .
e/.
�1x/, and k
ek � . Therefore, f satisfies the
inequality

kf .yx/ � ykf .x/k � ı
�
1C k

�
.a/

for all x; y 2 E nf0g. It follows from .a/, Theorem 5.3, and Lemma 5.5 that f is
homogeneous of degree k. ut

Jung [166] also proved the following:

Theorem 5.7. If a function f W E ! E satisfies f .0/ D 0 and the inequality (5.7)
for all x; y 2 Enf0g with kyk � , and if f .x/ ¤ 0 for all x 2 Enf0g, then f is
homogeneous of degree k.

Proof. For any x; y 2 Enf0g with 0 < kyk < , there exists some real number 

with 
 �  and k
yk � . By the same way as in the proof of Theorem 5.6, we see
that

kf .yx/ � ykf .x/k � ı
�
1C k

�
: .a/

Therefore, f satisfies the inequality .a/ for all x; y 2 Enf0g. In view of Theorem
5.3 and Lemma 5.5, we conclude that f is homogeneous of degree k. ut

F. Skof investigated an interesting asymptotic property of the additive functions
(see Theorem 2.34). In fact, she proved that a function f W E1 ! E2 is additive if
and only if kf .x C y/ � f .x/ � f .y/k ! 0 as kxk C kyk ! 1, where E1 is a
normed space and E2 is a Banach space.
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Now, we can prove the following corollary concerning an asymptotic property of
homogeneous functions (ref. [166]):

Corollary 5.8. Let f W E!E be a function satisfying f .0/D 0 in which f .x/¤ 0

for all x 2 Enf0g. Then f is a homogeneous function of degree k if and only if

kf .yx/ � ykf .x/k ! 0 as kxk C kyk ! 1:

Proof. Let ı > 0 be a given number. By the hypothesis, there exists a constant
 > 0 such that the inequality (5.7) holds true for kxk �  or kyk � . According
to Theorem 5.6, f is homogeneous of degree k. The reverse assertion is trivial. ut

5.3 Homogeneous Equation Between Vector Spaces

In general, the “multiplication” between elements of a vector space is not defined.
Therefore, the previous definition of homogeneous functions has to be modified
accordingly.

Let us define the scalar homogeneity of functions between vector spaces. Sup-
pose that k ¤ 0 is a fixed real number. A function f W E1 ! E2 between vector
spaces is called homogeneous of degree k if it satisfies f .cx/ D ckf .x/ for any
x 2 E1 and any scalar c such that ck is also a scalar. For the case of k D 1, the
corresponding function is simply said to be homogeneous.

J. Tabor [347] proved the following superstability result of the equation for ho-
mogeneous functions.

Theorem 5.9. Let E1 be a real vector space, let E2 be a real topological vector
space, and let V be a bounded subset of E2. Suppose a function G W R � E1 ! R
satisfies the inequality

jG.c; x/j � jcjpjG.1; x/j (5.8)

for some p ¤ 1 and for all c 2 R and x 2 E1. If a function f W E1 ! E2 satisfies

f .cx/ � cf .x/ 2 G.c; x/V (5.9)

for any c 2 R and x 2 E1, then f is a homogeneous function.

Proof. Assume that p < 1. Let fcng be a sequence of nonzero real numbers such
that jcnj ! 1 as n ! 1. It follows from (5.9) that

.1=cn/f .cnx/ 2 f .x/C �
G.cn; x/=cn

�
V .a/

for all n 2 N and for any x 2 E1. However, the inequality (5.8) yields

ˇ̌
G.cn; x/=cn

ˇ̌ � jcnjp�1jG.1; x/j
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for all n 2 N and for any x 2 E1. Hence, we obtain

lim
n!1G.cn; x/=cn D 0

for all x 2 E1, and further by .a/

lim
n!1.1=cn/f .cnx/ D f .x/ .b/

for all x 2 E1. Thus,
f .cx/ D lim

n!1.1=cn/f .cncx/ .c/

for all c 2 R and for all x 2 E1.
We claim that

f .cx/ D lim
n!1.1=cn/f .cncx/ D cf .x/ .d/

for c 2 R and x 2 E1. It is obvious that .d/ holds true for c D 0. Now, let c ¤ 0.
Then

lim
n!1 jcncj D 1;

therefore, by .b/ and .c/

f .cx/ D lim
n!1.1=cn/f .cncx/ D c lim

n!1
�
1=.cnc/

�
f .cncx/ D cf .x/;

i.e., f is homogeneous.
In the case p > 1 we consider a sequence fcng of nonzero real numbers such that

cn ! 0 as n ! 1. Then the remaining part of the proof runs analogously as in the
previous case. ut

Using the last result, Tabor [347] proved the following:

Corollary 5.10. Let E1 and E2 be real normed spaces, and let p ¤ 1 and � � 0

be given. If a function f W E1 ! E2 satisfies the inequality

kf .cx/ � cf .x/k � �kcxkp

for all c 2 R and x 2 E1, then f is homogeneous.

Proof. Put G.c; x/ D �kcxkp and V D ˚
x 2 E1 j kxk � 1

�
for any c 2 R and

x 2 E1. Applying Theorem 5.9 to this case, we end the proof. ut
S. Czerwik [88] studied the stability problems for the homogeneous functions of

degree k between vector spaces. In what follows, we use the notation

Uk D ˚
c 2 R j ck 2 R

�

for any real number k ¤ 0.
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Theorem 5.11 (Czerwik). LetE1 andE2 be a real vector space and a real Banach
space, respectively. Suppose ' W R�E1 ! Œ0;1/ is a function for which there exists
an a 2 Uknf0g such that

1X

nD1
jaj�nk'.a; anx/ < 1 (5.10)

for each x 2 E1, and
lim inf
n!1 jaj�nk'.c; anx/ D 0 (5.11)

for any .c; x/ 2 Uk � E1, where k ¤ 0 is a fixed real number. If a function f W
E1 ! E2 satisfies the inequality

kf .cx/ � ckf .x/k � '.c; x/ (5.12)

for all .c; x/ 2 Uk � E1, then there exists a unique function H W E1 ! E2 such
that H.cx/ D ckH.x/ for each .c; x/ 2 Uk �E1 and which satisfies

kf .x/ �H.x/k �
1X

nD1
jaj�nk'�a; an�1x

�
(5.13)

for any x 2 E1.

Proof. First, we claim that

kf .anx/ � ankf .x/k �
n�1X

jD0
jajjk'�a; an�j�1x

�
.a/

for all n 2 N and .a; x/ 2 Uk � E1. By putting c D a in (5.12), we immediately
see the validity of .a/ for n D 1. Assume that the inequality .a/ is true for some
n > 0. Replacing x in .a/ with ax yields

�
�f
�
anC1x

� � ankf .ax/
�
� �

n�1X

jD0
jajjk'�a; an�j x

�
:

Replacing c in (5.12) with a and multiplying the resulting inequality by jajnk , we
obtain �

�ankf .ax/ � a.nC1/kf .x/
�
� � jajnk'.a; x/:

Combining the last two inequalities yields

�
�f
�
anC1x

� � a.nC1/kf .x/
�
� �

nX

jD0
jajjk'�a; an�j x

�
;
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which completes the proof of .a/.
Put

hn.x/ D a�nkf .anx/

for all n 2 N and any x 2 E1. From .a/ we get

khn.x/ � f .x/k �
nX

jD1
jaj�jk'�a; aj�1x

�
.b/

for n 2 N and x 2 E1. If we replace x in .a/ with amx and n by n �m .n > m/,
then we have

khn.x/ � hm.x/k D jaj�nk��f .anx/ � a.n�m/kf .amx/
�
�

D jaj�nk��f .an�mamx/ � a.n�m/kf .amx/
�
�

� jaj�nk
n�m�1X

jD0
jajjk'�a; an�j�1x

�

D
nX

iDmC1
jaj�ik'�a; ai�1x�

and it follows from (5.10) that fhn.x/g is a Cauchy sequence for each x 2 E1. Since
E2 is complete, we can define

H.x/ D lim
n!1hn.x/ D lim

n!1 a�nkf .anx/

for any x 2 E1.
By (5.12) and (5.11), we get

kH.cx/ � ckH.x/k D lim
n!1

�
�a�nk�f .ancx/ � ckf .anx/���

� lim
n!1 jaj�nk'.c; anx/

D 0:

Thus, H is a homogeneous function of degree k when c 2 Uk . Also, from .b/ we
get (5.13).

Suppose thatH 0 W E1 ! E2 is another homogeneous function of degree k when
c 2 Uk satisfying (5.13). Then, by (5.13) and (5.10), we have

kH.x/ �H 0.x/k
D jaj�mkkH.amx/ �H 0.amx/k
� jaj�mk�kH.amx/ � f .amx/k C kf .amx/ �H 0.amx/k�
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� jaj�mk2
1X

nD1
jaj�nk'�a; anCm�1x

�

� 2

1X

iDmC1
jaj�ik'�a; ai�1x�

! 0 as m ! 1;

which impliesH D H 0. ut
On account of Theorem 5.11, Czerwik could also prove the following corollary

(see [88]).

Corollary 5.12. Let E1 and E2 be a real vector space and a real Banach space,
respectively. Suppose k ¤ 0 is a given real constant. If a function f W E1 ! E2
satisfies the inequality

kf .cx/ � ckf .x/k � ı C � jcjk

for some ı; � � 0 and for all .c; x/ 2 Uk � E1, then there exists a unique function
H W E1 ! E2 such that H.cx/ D ckH.x/ for each .c; x/ 2 Uk � E1 and which
satisfies

kf .x/ �H.x/k � �

for any x 2 E1.

Proof. Assume that k > 0. By Theorem 5.11, for each integerm � 2, there exists a
homogeneous function of degree k

Hm.x/ D lim
n!1m�nkf .mnx/

such that

kf .x/ �Hm.x/k �
1X

nD1
m�nk�ı C �mk

� D ı C �mk

mk � 1
.a/

for all x 2 E1. By .a/ we have

kHm.x/ �H`.x/k D 2�nkkHm.2nx/ �H`.2
nx/k

� 2�nk
 
ı C �mk

mk � 1 C ı C �`k

`k � 1

!

! 0 as n ! 1;

and hence Hm D H` for all integers ` and m larger than 1. We put H.x/ D H2.x/

for all x 2 E1. By .a/ we have

kf .x/ �H.x/k � ı C �mk

mk � 1
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for all x 2 E1 and lettingm ! 1, we find that kf .x/ �H.x/k � � .
In the case when k < 0, the proof runs analogously. ut
Czerwik [88] has remarked that the function f .x/ D sin x .x 2 R/ is not a

homogeneous function of degree k, but it satisfies

j sin.cx/ � ck sin xj � 1C jcjk

for each .c; x/ 2 Uk�R. From this example we see that not all cases under Corollary
5.12 are superstable (see [88]).

Corollary 5.13. Assume that the assumptions in Corollary 5.12 are satisfied. If ei-
ther ı or � is zero, then f .cx/ D ckf .x/ for all .c; x/ 2 .Uknf0g/� E1.

Proof. Suppose that ı D 0. Then,

kf .cx/ � ckf .x/k � � jcjk

for all .c; x/ 2 Uk � E1. Putting x D .1=c/y with c 2 Uknf0g, we get

�
�f .y/ � ckf

�
.1=c/y

��� � � jcjk: .a/

Assume that k > 0. It then follows from the last inequality that

f .y/ D lim
c!0

ckf
�
.1=c/y

�

for any y 2 E1. Therefore, for .a; x/ 2 .Uknf0g/�E1, we have

f .ax/ D lim
c!0

ckf
�
.1=c/ax

� D lim
c!0

ak.c=a/kf
�
.a=c/x

� D akf .x/:

For k < 0, it follows from .a/ that

lim
jcj!1

ckf
�
.1=c/y

� D f .y/;

and, as before, we find that the corollary is true for ı D 0 and k < 0.
Now, suppose that � D 0. Then, we have

�
�c�kf .cx/ � f .x/�� � ıjcj�k

for any .c; x/ 2 .Uknf0g/�E1. Hence, we get

f .x/ D
8
<

:

lim
jcj!1

c�kf .cx/ .for k > 0/;

lim
c!0

c�kf .cx/ .for k < 0/:

As before, the assertion is valid in these cases as well. ut
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5.4 Homogeneous Equation of Pexider Type

In this section, the Hyers–Ulam–Rassias stability of the homogeneous equation of
Pexider type

f .˛x/ D  .˛/g.x/

will be investigated. In 2005, S. Czerwik [91] introduced the following lemma.

Lemma 5.14. Let E1 and E2 be a real vector space and a real normed space,
respectively. Assume that f W E1 !E2, g W E1 !E2,  W R ! R, and ' W R �
E1 ! Œ0;1/ are given functions with  .1/ D 1. If f satisfies the inequality

kf .˛x/ �  .˛/g.x/k � '.˛; x/ (5.14)

for all ˛ 2 R and x 2 E1, then it holds true for all ˛ 2 R, x 2 E1, and n 2 N that

kf .˛nx/ �  .˛/nf .x/k �
nX

iD1
j .˛/ji�1ˆ1.˛; ˛n�ix/ (5.15)

and

kg.˛nx/ �  .˛/ng.x/k �
nX

iD1
j .˛/ji�1ˆ2.˛; ˛n�ix/; (5.16)

where ˆ1.˛; x/ D '.˛; x/C j .˛/j'.1; x/ and ˆ2.˛; x/ D '.˛; x/C '.1; ˛x/.

Proof. It follows from (5.14) that

kf .˛x/ �  .˛/f .x/k � kf .˛x/ �  .˛/g.x/k C k .˛/g.x/ �  .˛/f .x/k
� '.˛; x/C j .˛/j'.1; x/
D ˆ1.˛; x/

for any ˛ 2 R and x 2 E1. Hence, (5.15) is true for n D 1. Assume that (5.15)
holds true for some n > 0. It then follows from (5.15) that

�
�f
�
˛nC1x

� �  .˛/nC1f .x/
�
�

� �
�f
�
˛nC1x

� �  .˛/f .˛nx/
�
�C �

� .˛/f .˛nx/ �  .˛/nC1f .x/
�
�

� ˆ1.˛; ˛
nx/C j .˛/jkf .˛nx/ �  .˛/nf .x/k

� ˆ1.˛; ˛
nx/C

nX

iD1
j .˛/jiˆ1.˛; ˛n�ix/

D
nC1X

iD1
j .˛/ji�1ˆ1

�
˛; ˛nC1�ix

�
;

which proves the inequality (5.15) for all n 2 N . Similarly, we can prove the
inequality (5.16). ut
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Using Lemma 5.14, Czerwik proved the following theorem concerning the
Hyers–Ulam–Rassias stability of the homogeneous functional equation of Pexider
type (see [91, Theorem 1]).

Theorem 5.15. Let E1 and E2 be a real vector space and a real Banach space,
respectively. Assume that f W E1 ! E2, g W E1 ! E2,  W R ! R, and
' W R � E1 ! Œ0;1/ are given functions with  .1/ D 1. Moreover, assume that
there exists a ˇ 2 R such that  .ˇ/ ¤ 0 and the series

1X

nD1
j .ˇ/j�nˆ1

�
ˇ; ˇn�1x

�
< 1 (5.17)

for all x 2 E1 and

lim
n!1 j .ˇ/j�nˆ1

�
˛; ˇn�1x

� D 0 (5.18)

for all ˛ 2 R and x 2 E1. If f satisfies the inequality (5.14) for all ˛ 2 R and
x 2 E1, then there exists a unique  -homogeneous function H W E1 ! E2 such
that

kH.x/ � f .x/k �
1X

nD1
j .ˇ/j�nˆ1

�
ˇ; ˇn�1x

�
(5.19)

and

kH.x/ � g.x/k �
1X

nD1
j .ˇ/j�nˆ2

�
ˇ; ˇn�1x

�
(5.20)

for all x 2 E1. .See Lemma 5.14 for the definitions of ˆ1 and ˆ2:/

Proof. For each x 2 E1 and n 2 N , define

Hn.x/ D  .ˇ/�nf .ˇnx/: .a/

It then follows from (5.15) that

kHn.x/� f .x/k �
nX

iD1
j .ˇ/j�.n�i/�1ˆ1

�
ˇ; ˇn�ix

�
;

which implies that

kHn.x/ � f .x/k �
nX

iD1
j .ˇ/j�iˆ1

�
ˇ; ˇi�1x

�
.b/

for any x 2 E1 and n 2 N .
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Now, we will verify that fHn.x/g is a Cauchy sequence for each x 2 E1. The
inequality (5.15) yields

kHn.x/ �Hm.x/k � j .ˇ/j�n��f .ˇnx/ �  .ˇ/n�mf .ˇmx/
�
�

�
nX

iDmC1
j .ˇ/j�iˆ1

�
ˇ; ˇi�1x

�

for all x 2 E1 and m; n 2 N with n > m. In view of (5.17), we see that fHn.x/g is
a Cauchy sequence for any x 2 E1. Therefore, we can define a functionH W E1 !
E2 by

H.x/ D lim
n!1Hn.x/:

It follows from (5.14) and (5.18) that

kH.˛x/ �  .˛/H.x/k D lim
n!1 j .ˇ/j�nkf .˛ˇnx/ �  .˛/f .ˇnx/k

� lim
n!1 j .ˇ/j�nˆ1.˛; ˇnx/

D 0

for all ˛ 2 R and x 2 E1, which implies thatH is  -homogeneous. Due to .b/ and
the definition of H , the inequality (5.19) is true.

By a similar way as for the fHn.x/g, if we define

H 0
n.x/ D  .ˇ/�ng.ˇnx/

for every x 2 E1, then fH 0
n.x/g is a Cauchy sequence. Hence, we may define

H 0.x/ D lim
n!1H 0

n.x/:

Then, by (5.16), we get

kH 0
n.x/ � g.x/k �

nX

iD1
j .ˇ/j�iˆ2

�
ˇ; ˇi�1x

�
.c/

for all x 2 E1. Furthermore, by (5.14), we have

kHn.x/ �H 0
n.x/k D j .ˇ/j�nkf .ˇnx/ � g.ˇnx/k

� j .ˇ/j�n'.1; ˇnx/
D .1=2/j .ˇ/j�nˆ1.1; ˇnx/:

In view of (5.18), it follows that H.x/ D H 0.x/ for all x 2 E1 and hence, the
inequality (5.20) follows from .c/.
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Finally, it remains to prove the uniqueness of the  -homogeneous function H .
Assume that H0 W E1 ! E2 is another  -homogeneous function which satisfies
the inequalities (5.19) and (5.20). Without loss of generality, we suppose that there
exists an x0 2 E1 with H0.x0/ ¤ 0. Then, by using the  -homogeneity of H0, we
have

H0.˛ˇx0/ D  .˛ˇ/H0.x0/ D  .˛/ .ˇ/H0.x0/

for all ˛; ˇ 2 R, and thus

 .˛ˇ/ D  .˛/ .ˇ/ .d/

for any ˛; ˇ 2 R.
Consequently, it follows from (5.17), (5.19), and .d/ that

kH.x/ �H0.x/k
D j .ˇm/j�1kH.ˇmx/ �H0.ˇmx/k
� j .ˇ/j�m�kH.ˇmx/ � f .ˇmx/k C kf .ˇmx/ �H0.ˇmx/k

�

� 2

1X

nDmC1
j .ˇ/j�nˆ1

�
ˇ; ˇn�1x

�

! 0 as m ! 1

for all x 2 E1, which proves the uniqueness of H . ut
From the proof of Theorem 5.15, we may guess that if H does not identically

equal the zero function, then the function  has to be multiplicative.

Corollary 5.16. Let E1 and E2 be a real vector space and a real Banach space,
respectively. Assume that functions f W E1 ! E2 and g W E1 ! E2 satisfy the
inequality

kf .˛x/ � j˛jvg.x/k � ı C j˛jv"

for all x 2 E1 and ˛ 2 R, where v > 0, ı � 0, and " � 0 are constants. Then, there
exists a unique functionH W E1 ! E2 such that

H.˛x/ D j˛jvH.x/;

kH.x/ � f .x/k � ı C 2";

kH.x/ � g.x/k � "

for all x 2 E1.

Corollary 5.17. Let E1 and E2 be a real vector space and a real Banach space,
respectively. Assume that functions f W E1 ! E2 and g W E1 ! E2 satisfy the
inequality

kf .˛x/ � j˛jvg.x/k � ı C j˛jv"
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for all x 2 E1 and ˛ 2 R, where v > 0, ı � 0, and " � 0 are constants.
.i/ If ı D 0, then f is v-homogeneous and

kf .x/ � g.x/k � "

for any x 2 E1;
.ii/ If " D 0, then g is v-homogeneous and

kf .x/ � g.x/k � ı

for any x 2 E1.

A function f W E1 ! E2 is called a quadratic function if and only if

f .x C y/C f .x � y/ D 2f .x/C 2f .y/

for all x; y 2 E1.

Corollary 5.18. Let E1 and E2 be a real vector space and a real Banach space,
respectively. Assume that functions f; g; h W E1 ! E2 are given and a constant
ı > 0 is given. Then, f D g C h, where g is a quadratic 2-homogeneous function
and kh.x/k � ı for all x 2 E1, if and only if

kf .x C y/C f .x � y/ � 2f .x/ � 2f .y/k � 6ı (5.21)

and
�
�f .˛x/ � ˛2f .x/�� � ı C ˛2ı (5.22)

for all x; y 2 E1 and ˛ 2 R.

Proof. Assume that f D g C h, where g is a quadratic 2-homogeneous function
and kh.x/k � ı for all x 2 E1. Obviously, we have

kf .x C y/C f .x � y/� 2f .x/� 2f .y/k
D kh.x C y/C h.x � y/ � 2h.x/� 2h.y/k
� 6ı

and
�
�f .˛x/ � ˛2f .x/�� D �

�h.˛x/ � ˛2h.x/�� � ı C ˛2ı

for all x; y 2 E1 and ˛ 2 R.
We now assume that the inequalities (5.21) and (5.22) are true. According to

Corollary 5.16, there exists a 2-homogeneous function g W E1 ! E2 such that

kf .x/ � g.x/k � ı
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for each x 2 E1. If we define h D f � g, then f D g C h and kh.x/k � ı for all
x 2 E1. By (5.21), we get

�
�g
�
˛.x C y/

�C g
�
˛.x � y/

� � 2g.˛x/ � 2g.˛y/

C h
�
˛.x C y/

�C h
�
˛.x � y/� � 2h.˛x/ � 2h.˛y/

�
� � 6ı;

and hence

�
�g.x C y/C g.x � y/� 2g.x/ � 2g.y/

C �
1=˛2

��
h
�
˛.x C y/

�C h
�
˛.x � y/� � 2h.˛x/ � 2h.˛y/

��� � 6ı=˛2

for any ˛ ¤ 0. Finally, if we let ˛ ! 1, then

kg.x C y/C g.x � y/� 2g.x/ � 2g.y/k D 0

for all x; y 2 E1, which implies that g is a quadratic function. ut



Chapter 6
Linear Functional Equations

A function is called a linear function if it is homogeneous as well as additive.
The homogeneity of a function, however, is a consequence of additivity if the func-
tion is assumed to be continuous. There are a number of (systems of) functional
equations which include all the linear functions as their solutions. In this chap-
ter, only a few (systems of) functional equations among them will be introduced.
In Section 6.1, the superstability property of the “intuitive” system (6.1) of func-
tional equations f .x C y/ D f .x/ C f .y/ and f .cx/ D cf .x/ which stands for
the linear functions is introduced. The stability problem for the functional equation
f .x C cy/ D f .x/ C cf .y/ is proved in the second section and the result is ap-
plied to the proof of the Hyers–Ulam stability of the “intuitive” system (6.1). In the
final section, stability problems of other systems, which describe linear functions,
are discussed.

6.1 A System for Linear Functions

It is natural for one to expect that the additive Cauchy equation, together with the
homogeneous equation, may determine all linear functions. Thus, the following sys-
tem of the functional equations

�
f .x C y/ D f .x/C f .y/;

f .cx/ D cf .x/
(6.1)

may be introduced as a system of equations for linear functions. This section is de-
voted to the study of superstability problems of the system (6.1) of linear functions.

J. Tabor [347] proved a theorem concerning the superstability of the system (6.1).

Theorem 6.1 (Tabor). Let E1 be a real vector space, E2 a locally convex topo-
logical vector space, V a bounded subset of E2, and let F W E21 ! R and
G W R�E1 ! R be such functions that there exists a sequence fcng of real numbers
satisfying

lim
n!1F.cnx; cny/=cn D 0 (6.2)

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 6, c� Springer Science+Business Media, LLC 2011
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and

lim
n!1G.cn; x/=cn D 0 (6.3)

for all x; y 2 E1. If a function f W E1 ! E2 satisfies

�
f .x C y/� f .x/ � f .y/ 2 F.x; y/V;
f .cx/ � cf .x/ 2 G.c; x/V (6.4)

for all c 2 R and x; y 2 E1, then f is additive. Moreover, if for each x 2 E1 the
function G.�; x/ is bounded on a set of positive inner Lebesgue measure or on a set
of the second category with the Baire property, then f is a linear function.

Proof. It follows from the second relation in (6.4) that

f .cnx/=cn 2 f .x/C �
G.cn; x/=cn

�
V

for n 2 N and x 2 E1. Since V is bounded, by (6.3) we obtain

lim
n!1f .cnx/=cn D f .x/ .a/

for each x 2 E1. From the first relation in (6.4) we get

f
�
cn.x C y/

�ı
cn � f .cnx/=cn � f .cny/=cn 2 �F.cnx; cny/=cn

�
V

for all n 2 N and x; y 2 E1, where by (6.2) and .a/ we obtain

f .x C y/� f .x/ � f .y/ D 0

for all x; y 2 E1, which means that f is additive.
For the proof of the second part we arbitrarily fix an x 2 E1 and a � 2 E�

2 (the
dual space of E2). We put

f �.c/ D �
�
f .cx/

�

for all real numbers c. Obviously, f � is additive. From the second relation in (6.4)
it follows that

f �.c/ 2 ��cf .x/CG.c; x/V
�

.b/

for any c 2 R. By the assumption, G.�; x/ is bounded on a set A of positive inner
Lebesgue measure or of the second category with the Baire property. Without loss
of generality, we may assume that A is bounded. Since � is a continuous linear
function, it maps a bounded set into a bounded set. Thus, by .b/, f � is bounded on
A, and hence linear (cf. Theorem 2.1, [1, 228]). Now, for an arbitrarily fixed c 2 R,
we get

�
�
f .cx/

� D f �.c/ D cf �.1/ D c�
�
f .x/

� D �
�
cf .x/

�
:
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Since this equality holds true for each � 2 E�
2 , we have

f .cx/ D cf .x/

for any c 2 R and x 2 E1, which ends the proof. ut
Tabor [347] noted that the boundedness of the function G.�; x/ on a respective

set is an essential assumption of Theorem 6.1: Consider an additive discontinuous
function f W R ! R and put

8
<

:

F.x; y/ D 0 .for x; y 2 R/;
G.c; x/ D f .cx/ � cf .x/ .for c; x 2 R/;
V D f1g:

Clearly, both relations in (6.4) hold true. We also have G.c; x/ D 0 for c 2 Q and
x 2 R. Therefore, for an arbitrary sequence fcng of nonzero rational numbers, (6.2)
and (6.3) are valid. However, f is not linear.

Using the last theorem, Tabor [347] obtained a more familiar result:

Corollary 6.2. Let E1 and E2 be normed spaces, let p ¤ 1 be given, and let a
function H W Œ0;1/2 ! Œ0;1/ be homogeneous of degree p and a function K W
Œ0;1/2 ! Œ0;1/ be homogeneous of degree p with respect to the first variable. If
a function f W E1 ! E2 satisfies

� kf .x C y/ � f .x/ � f .y/k � H
�kxk; kyk�;

kf .cx/ � cf .x/k � K
�jcj; kxk� (6.5)

for all c 2 R and all x; y 2 E1, then f is linear.

Proof. Put

8
<

:

F.x; y/ D H
�kxk; kyk� .for x; y 2 E1/;

G.c; x/ D K
�jcj; kxk� .for c 2 R; x 2 E1/;

V D ˚
x 2 E1 j kxk � 1

�
:

Then, in view of (6.5), both conditions in (6.4) hold true. We now claim that there
exists a sequence fcng satisfying (6.2) and (6.3). In the case of p < 1 we take
cn D 2n. Then we obtain

lim
n!1 2�nF.2nx; 2ny/ D lim

n!1 2n.p�1/H
�kxk; kyk� D 0

and

lim
n!1 2�nG.2n; x/ D lim

n!1 2n.p�1/K
�
1; kxk� D 0

for all x; y 2 E1.
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In the case p > 1 we take cn D 2�n. Then,

lim
n!1 2nF.2�nx; 2�ny/ D lim

n!1 2n.1�p/H
�kxk; kyk� D 0

and
lim
n!1 2nG.2�n; x/ D lim

n!1 2n.1�p/K
�
1; kxk� D 0

for all x; y 2 E1. We have

G.c; x/ D jcjpK�1; kxk�

for c 2 R and x 2 E1. This equality shows that the function G.�; x/ is bounded
on every bounded interval, isolated from zero. Hence, we can apply Theorem 6.1,
which ends the proof. ut

Taking in Corollary 6.2

�
H
�kxk; kyk� D �

�kxkp C kykp� .for x; y 2 E1/;
K
�jcj; kxk� D �kcxkp .for c 2 R; x 2 E1/;

Tabor [347] obtained the following corollary.

Corollary 6.3. Let E1 and E2 be normed spaces, and let p ¤ 1 and � � 0 be
given. If a function f W E1 ! E2 satisfies

� kf .x C y/� f .x/ � f .y/k � �
�kxkp C kykp�;

kf .cx/ � cf .x/k � �kcxkp

for all c 2 R and for all x; y 2 E1, then f is linear.

6.2 Functional Equation f .x C cy/ D f .x/ C cf .y/

In the previous section, it was shown that the “intuitive” linear functional equations
(6.1) is superstable. J. Schwaiger [325] introduced the functional equation

f .x C cy/ D f .x/C cf .y/

which is equivalent to the system (6.1) if the related domain and range are assumed
to be vector spaces and proved the stability of the given equation.

Theorem 6.4 (Schwaiger). Let E1 and E2 be a real vector space and a real
Banach space, respectively, and let ' W R ! Œ0;1/ be a function. If a function
f W E1 ! E2 satisfies the inequality
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kf .x C cy/ � f .x/ � cf .y/k � '.c/ (6.6)

for all x; y 2 E1 and for any c 2 R, then there exists a unique linear function
L W E1 ! E2 such that

kf .x/ � L.x/k � '.1/

for all x 2 E1.

Proof. For c D 1 we see that the conditions in Theorem 2.3 (see also the comment
just below the theorem) are satisfied with ı D '.1/, whereL.x/ D lim

n!12
�nf .2nx/

is the unique additive function such that

kf .x/ � L.x/k � '.1/

for all x 2 E1. It remains to show the homogeneity of L. Putting x D 0 and
replacing y in (6.6) with 2ny yield

kf .2ncy/ � cf .2ny/ � f .0/k � '.c/:

Dividing this inequality by 2n and letting n ! 1, we find that

L.cy/ D cL.y/

for all y 2 E1 and c 2 R. ut
Using the above theorem we can prove the Hyers–Ulam stability of the system

(6.1) which cannot be deduced from Theorem 6.1.

Corollary 6.5. Let E1 and E2 be a real vector space and a real Banach space,
respectively, and let ı1; ı2 � 0 be given. If a function f W E1 ! E2 satisfies the
inequalities

� kf .x C y/� f .x/ � f .y/k � ı1;

kf .cx/ � cf .x/k � ı2

for all x; y 2 E1 and for any c 2 R, then there exists a unique linear function
L W E1 ! E2 such that

kf .x/ �L.x/k � ı1 C ı2

for any x 2 E1.

Proof. From the hypothesis we get

kf .x C cy/ � f .x/ � cf .y/k
� kf .x C cy/ � f .x/ � f .cy/k C kf .cy/ � cf .y/k
� ı1 C ı2
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for all x; y 2 E1 and for any c 2 R. In view of Theorem 6.4 with '.c/ D ı1 C ı2
(c 2 R), there exists a unique linear function L W E1 ! E2 such that

kf .x/ �L.x/k � ı1 C ı2

for any x 2 E1. ut

6.3 Stability for Other Equations

We start this section with an old theorem which is often called the Eidelheit’s sepa-
ration theorem (see [93] for the proof of this theorem). It plays an important role in
the proof of Theorem 6.7.

Theorem 6.6 (Eidelheit). Suppose E is a topological vector space. Let K1 and
K2 be convex subsets of E such that K1 has an interior point and K2 contains no
interior point of K1. Then there exists a � 2 E� such that

�.x/ � �.y/

for all x 2 K1 and for all y 2 K2.

It was shown in Theorem 2.6 that the statement of Theorem 2.5 is no more valid
for the case when p D 1 is assumed in the functional inequality (2.5). Such coun-
terexamples have stimulated many authors to attempt to surpass such awkwardness
of the inequality (2.5) for the case p D 1. B. E. Johnson was one of those mathemati-
cians who worked for this purpose. Johnson [147] provided the following theorem.

Theorem 6.7 (Johnson). Let E be a real Banach space. If a continuous functional
f W E ! R satisfies the functional inequalities

ˇ̌
f
�
c1x1 C � � � C cnxn

� � c1f .x1/ � � � � � cnf .xn/
ˇ̌

� �
�kc1x1k C � � � C kcnxnk�

for some � > 0 and for all n 2 N , all c1; : : : ; cn 2 R, and all x1; : : : ; xn 2 E , then
there exists a linear functional L W E ! R such that

jf .x/ � L.x/j � 3�kxk

for all x 2 E .

Proof. For the special case of n D 1, the above inequality may be expressed as

jf .cx/ � cf .x/j � �kcxk .a/
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for all c 2 R and for all x 2 E , and putting c D 0 in .a/ yields f .0/ D 0. Since f is
assumed to be continuous, there exists an 
 > 0 such that jf .x/j D jf .x/�f .0/j<1
when kxk < 
. Given any x0 ¤ 0 in E , put c D .2=
/kx0k and x D .1=c/x0. Thus,
we get

jf .x0/j D jf .cx/j � jcf .x/j C �kcxk < .2=
/kx0k C �kx0k

for all x0 2 Enf0g.
Put

� D ˚
.x; y/ 2 E � R j kxk � 1; y D f .x/

�

and let � 0 be the closed convex hull of � . Given .x; y/ 2 � 0, let f.x.m/; y.m//g be a
sequence of convex combinations of elements of � converging to .x; y/. Thus, we
have

x.m/ D
X

i

c
.m/
i x

.m/
i and y.m/ D

X

i

c
.m/
i y

.m/
i D

X

i

c
.m/
i f

�
x
.m/
i

�
;

where

c
.m/
i � 0;

X

i

c
.m/
i D 1; and

�
�x.m/i

�
� � 1:

By hypothesis, we obtain

ˇ
ˇ
ˇf
�
x.m/

� � y.m/
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ̌f

 
X

i

c
.m/
i x

.m/
i

!

�
X

i

c
.m/
i f

�
x
.m/
i

�
ˇ
ˇ
ˇ
ˇ̌

� �
X

i

�
�c.m/i x

.m/
i

�
�

D �
X

i

c
.m/
i

�
�x.m/i

�
�

� �:

Taking the limit as m ! 1, we have

jf .x/ � yj � � and kxk � 1 .b/

for .x; y/ 2 � 0.
Now, put

�C D ˚
.x; y/ 2 E � R j kxk � 1 and 9 z � y with .x; z/ in � 0�:

Let � 00 be the translate � 0�.0; 2�/ of � 0. Since � is a subset ofB�Œ�2=
��; 2=
C
�� and � 0 is also a subset of B � Œ�2=
 � �; 2=
C ��, where B is the closed unit
ball in E , we see that �C contains B � .2=
C �;1/ and hence is a convex body.
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Since the closed interval Œ�2=
� �; 2=
C �� is compact, it is easily shown that �C
is closed and hence that it is the closure of its interior. If .x; y/ 2 �C, then there
exists a z with z � y and .x; z/ 2 � 0, so by .b/, we have z � f .x/ � � , and thus
y � f .x/� � . Hence, if .x; y/ belongs to the interior of �C, then y > f .x/� � . If
.x; y/ 2 � 00, then .x; y C 2�/ is in � 0, so by .b/, we get y C 2� � f .x/ C � , i.e.,
y � f .x/ � � . Therefore,

.�C/ı \ � 00 D ;:
Thus, by Eidelheit’s separation theorem (see above), there exist a nonzero linear

functional G on the Banach space E � R and a number k with G.w/ � k for
w 2 .�C/ı and hence for w in �C, and G.w/ � k for w 2 � 00. There is an L 2 E�
(where E� is the dual space of E) and � 2 R such that G.x; y/ D �y � L.x/ for
x 2 E and y 2 R. If y > f .x/ and kxk � 1, then .x; y/ 2 �C, so �y � L.x/ D
G.x; y/ � k. By letting y ! 1, we see that � � 0. Since .x; f .x// 2 �C and
.x; f .x/ � 2�/ 2 � 00 for kxk � 1, we have �f .x/ � L.x/ � k while �.f .x/ �
2�/ � L.x/ � k for kxk � 1. If � were 0, then we would have L.x/ D �k for
kxk � 1 and hence we would obtain k D 0, L D 0, and G D 0 which would
lead to a contradiction. Thus, we conclude that � > 0. Dividing by �, we may
assume that � D 1. Then, we get k � f .x/ � L.x/ � k C 2� when kxk � 1. As
f .0/ D 0 D L.0/, this shows that 0 � k � �2� , and hence

jf .x/ � L.x/j � 2� .c/

when kxk � 1.
For any x0 ¤ 0 in E , put x D x0=kx0k, then kxk D 1 holds true. Then, by .a/

and .c/, we have

jf .x0/ �L.x0/j � ˇ
ˇf
�kx0kx� � kx0kf .x/ˇˇC kx0k jf .x/ � L.x/j

� �kx0k C 2�kx0k

for all x0 2 E . ut
P. Šemrl simplified the functional inequalities appearing in the last theorem and

proved the stability result. First, we introduce a lemma provided by Šemrl [326].

Lemma 6.8. Given normed spaces E1 and E2, let f W E1 ! E2 be a continuous
function satisfying the functional inequality

kf .x1 C � � � C xn/ � f .x1/ � � � � � f .xn/k � �
�kx1k C � � � C kxnk� (6.7)

for some � > 0 and for all n 2 N , x1; : : : ; xn 2 E1. Then

kf .tx/ � tf .x/k �
�
2�ktxk .for t � 0/;

4�ktxk .for t < 0/
(6.8)

for all t 2 R and all x 2 E1.
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Proof. Putting each xi D .1=m/x in (6.7) yields

�
�f
�
.n=m/x

�� nf
�
.1=m/x

��� � �k.n=m/xk;

where n andm are any positive integers. It follows that

��f
�
.n=m/x

� � .n=m/f .x/��
� �
�f
�
.n=m/x

�� nf
�
.1=m/x

���C .n=m/
�
�mf

�
.1=m/x

�� f .x/
�
�

� �k.n=m/xk C .n=m/�kxk

and hence
�
�f
�
.n=m/x

� � .n=m/f .x/�� � 2�k.n=m/xk .a/

for all n;m 2 N and all x 2 E1. By (6.7), we get f .0/ D 0.
Now, put x1 D �.n=m/x, x2 D .n=m/x, and x3 D � � � D xn D 0 in (6.7) to

obtain
��f
� � .n=m/x

�C f
�
.n=m/x

��� � 2�k.n=m/xk;
while, by .a/, we have

�
� � f �.n=m/x�C .n=m/f .x/

�
� � 2�k.n=m/xk:

Combining the last two inequalities yields

�
�f
� � .n=m/x

�� .�n=m/f .x/�� � 4�k.n=m/xk:

Thus, we have shown that

kf .tx/ � tf .x/k �
�
2�ktxk .for t � 0/;

4�ktxk .for t < 0/

for all t 2 Q and for any x 2 E1. Since f is continuous, (6.8) is satisfied for all
t 2 R and x 2 E1. ut

If E1 is a real Banach space and if a continuous function f W E1 ! R satisfies
the system (6.7), then

kf .c1x1 C � � � C cnxn/ � c1f .x1/� � � � � cnf .xn/k
� kf .c1x1 C � � � C cnxn/� f .c1x1/ � � � � � f .cnxn/k

C kf .c1x1/ � c1f .x1/k C � � � C kf .cnxn/ � cnf .xn/k
� �

�kc1x1k C � � � C kcnxnk�C 4�kc1x1k C � � � C 4�kcnxnk
D 5�

�kc1x1k C � � � C kcnxnk�
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for all n 2 N , all c1; : : : ; cn 2 R, and for all x1; : : : ; xn 2 E1. Theorem 6.7, together
with this inequality, implies that there exists a linear functional L W E1 ! R such
that jf .x/ � L.x/j � 15�kxk for any x 2 E1.

In the special case where E1 D E2 D R, Šemrl [326] proved the following
theorem.

Theorem 6.9 (Šemrl). If a continuous function f W R ! R satisfies the inequality
(6.7) for all n 2 N and all x1; : : : ; xn 2 R, then there exists a linear function
L W R ! R such that

jf .x/ � L.x/j � � jxj (6.9)

for all x 2 R.

Proof. Applying Lemma 6.8 to the present case, we have

jf .ts/ � tf .s/j �
�
2� jtsj .for t � 0/;

4� jtsj .for t < 0/

for all s; t 2 R. Thus, for any two nonzero real numbers s and t , we find that

jf .t/=t � f .s/=sj D �
1=jt j�ˇ̌f �.t=s/s� � .t=s/f .s/

ˇ̌

�
�
2� .for ts � 0/;

4� .for ts < 0/:

Let us define

a D sup
˚
f .t/=t j t ¤ 0

�
and b D inf

˚
f .t/=t j t ¤ 0

�
:

First, consider the case that

a D sup
˚
f .t/=t j t > 0� and b D inf

˚
f .t/=t j t > 0�:

By the last inequality, we have a � b � 2� , and by putting

L.x/ D a C b

2
x;

we obtain the inequality (6.9) for all x 2 R. The same argument can also be applied
if a D sup

˚
f .t/=t j t < 0� and b D inf

˚
f .t/=t j t < 0�.

It remains to consider the case that

a D sup
˚
f .t/=t j t > 0� and b D inf

˚
f .t/=t j t < 0�:

(We omit the proof of the case

a D sup
˚
f .t/=t j t < 0� and b D inf

˚
f .t/=t j t > 0�
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because it goes through in the same way.) As mentioned before, we have to show
that a � b � 2� . Replacing f .t/ with f .t/ � .1=2/.a C b/t we may assume that
a D �b. Now, we must prove that a � � .

Assume on the contrary that a > � . Since f is continuous, there exist real num-
bers r1; r2 (0 < r1 < r2) such that

f .t/ > � t .a/

for all t 2 Œr1; r2/. We claim that there exists c1 > 0 such that for every t > c1
we can find a positive integer m and a real number u 2 Œr1; r2/ satisfying t D mu.
Put n D 1 C Œr1=.r2 � r1/�, where the square brackets denote the integer part of
r1=.r2�r1/. Then c1 D nr1 has the above property. For, if t > nr1, putm D Œt=r1�.
Then m � n and mr1 � t < .m C 1/r1, so t 2 Œmr1; .m C 1/r1/. Also, since
m � n, we have m > r1=.r2 � r1/ which implies that .m C 1/r1 < mr2, so that
t 2 Œmr1; mr2/, i.e., there exists a u 2 Œr1; r2/ with t D mu. Similarly, there exist
negative numbers p1; p2; c2 with p1 < p2 such that t 2 .p1; p2� implies

f .t/ > �� t; .b/

while for each t < c2 there exist a positive integer k and a real number w 2 .p1; p2�
with t D kw.

Now, choose t > max
˚
c1; jc2j

�
. Then, we may take t D mu D �kw with

u 2 Œr1; r2/ and w 2 .p1; p2�. Since f .w/ > ��w, f .w/ > 0. By .a/ and .b/,
we get

jf .0/ �mf.u/� kf .w/j D jmf.u/C kf .w/j
D mf.u/C kf .w/

> �.mu � kw/

D �
�
mjuj C kjwj�;

since u 2 Œr1; r2/ and w 2 .p1; p2�. On the other hand, by (6.7), we obtain

jf .0/�mf.u/� kf .w/j D jf .mu C kw/ �mf.u/� kf .w/j
� �

�
mjuj C kjwj�;

since mu D �kw and m; k are positive integers. This contradiction ends the proof
of the theorem. ut



Chapter 7
Jensen’s Functional Equation

There are a number of variations of the additive Cauchy functional equation, for
example, generalized additive Cauchy equations appearing in Chapter 3, Hosszú’s
equation, homogeneous equation, linear functional equation, etc. However, Jensen’s
functional equation is the simplest and the most important one among them.
The Hyers–Ulam–Rassias stability problems of Jensen’s equation are proved in
Section 7.1, and the Hyers–Ulam stability problems of that equation on restricted
domains will be discussed in Section 7.2. Moreover, the stability result on a re-
stricted domain will be applied to the study of an asymptotic property of additive
functions. In Section 7.3, another approach to prove the stability will be introduced.
This approach is called the fixed point method. The superstability and Ger type sta-
bility of the Lobačevskiĭ functional equation will be surveyed in the last section.

7.1 Hyers–Ulam–Rassias Stability

The simplest and most elegant variation of the additive Cauchy equation is Jensen’s
functional equation which may be expressed in the form

2f
�x C y

2

�
D f .x/C f .y/:

Every solution of Jensen’s functional equation is called a Jensen function. It is
well-known that a function f between real vector spaces with f .0/D 0 is a Jensen
function if and only if it is an additive function (see [258,278]). We may refer to the
paper [129] of H. Haruki and Th. M. Rassias for the entire solutions of a generalized
Jensen’s functional equation.

Using the ideas from Theorems 2.3 and 2.5, S.-M. Jung [163] proved the Hyers–
Ulam–Rassias stability of Jensen’s functional equation.

Theorem 7.1 (Jung). Let E1 and E2 be a real normed space and a real Banach
space, respectively. Assume that ı; � � 0 are fixed, and let p > 0 be given with
p ¤ 1. Suppose a function f W E1 ! E2 satisfies the functional inequality

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 7, c� Springer Science+Business Media, LLC 2011
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�
�
�2f

�x C y

2

�
� f .x/ � f .y/

�
�
� � ı C �

�kxkp C kykp� (7.1)

for all x; y 2 E1. Furthermore, assume f .0/ D 0 and ı D 0 in (7.1) for the case of
p > 1. Then there exists a unique additive function A W E1 ! E2 such that

kf .x/ �A.x/k �
(
ı C kf .0/k C �

21�p � 1
��1

�kxkp .for p < 1/;

2p�1�2p�1 � 1
��1

�kxkp .for p > 1/
(7.2)

for all x 2 E1.

Proof. If we put y D 0 in (7.1), then we have

k2f .x=2/� f .x/k � ı C kf .0/k C �kxkp .a/

for all x 2 E1. By induction on n, we prove

k2�nf .2nx/ � f .x/k � �
ı C kf .0/k�

nX

kD1
2�k C �kxkp

nX

kD1
2�.1�p/k .b/

for the case 0 < p < 1. By substituting 2x for x in .a/ and dividing the resulting
inequality by 2, we see the validity of .b/ for n D 1. Assume now that the inequality
.b/ holds true for some n 2 N . If we replace x in .a/ with 2nC1x and divide by 2
the resulting inequality, then it follows from .b/ that

�
�2�.nC1/f

�
2nC1x

� � f .x/
�
�

� 2�n��2�1f
�
2nC1x

� � f .2nx/��C k2�nf .2nx/ � f .x/k

� �
ı C kf .0/k�

nC1X

kD1
2�k C �kxkp

nC1X

kD1
2�.1�p/k:

This ends the proof of the inequality .b/.
Let us define

A.x/ D lim
n!1 2�nf .2nx/ .c/

for all x 2 E1. The function A is well defined because E2 is a Banach space and
the sequence f2�nf .2nx/g IS a Cauchy sequence for all x 2 E1: For n > m we use
.b/ to obtain

k2�nf .2nx/ � 2�mf .2mx/k
D 2�m��2�.n�m/f .2n�m � 2mx/ � f .2mx/

�
�

� 2�m
�
ı C kf .0/k C 2mp

21�p � 1�kxkp
�

! 0 as m ! 1:
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Let x; y 2 E1 be arbitrary. It then follows from .c/ and (7.1) that

kA.x C y/� A.x/ �A.y/k
D lim

n!1 2�.nC1/
�
��
�2f

	
2nC1.x C y/

2



� f

�
2nC1x

� � f �2nC1y
�
�
��
�

� lim
n!1 2�.nC1/

�
ı C �2.nC1/p�kxkp C kykp�

�

D 0:

Hence, A is an additive function, and the inequality .b/ and the definition .c/ imply
the validity of the first inequality in (7.2).

Now, let A0 W E1!E2 be another additive function which satisfies the first
inequality in (7.2). It then follows

kA.x/ �A0.x/k D 2�nkA.2nx/ � A0.2nx/k
� 2�n�kA.2nx/ � f .2nx/k C kf .2nx/ �A0.2nx/k�

� 2�n
�
2ı C 2kf .0/k C 2�

21�p � 1
2npkxkp

�

for all x 2 E1 and for any n 2 N . Since the right-hand side of the last inequality
tends to zero as n ! 1, we conclude that A.x/ D A0.x/ for all x 2 E1, which
proves the uniqueness of A.

For the case when p > 1 and ı D 0 in the functional inequality (7.1) we can
analogously prove the inequality

k2nf .2�nx/ � f .x/k � �kxkp
n�1X

kD0
2�.p�1/k

instead of .b/. The remainder of the proof for this case continues in an analo-
gous way. ut

As mentioned in [163], the proof of the Hyers–Ulam–Rassias stability of Jensen’s
functional equation for the case of p D 0 can be achieved similarly as in that of
Theorem 7.1.

Corollary 7.2. Let E1 and E2 be a real normed space and a real Banach space,
respectively. Assume ı � 0 is fixed. Suppose a function f W E1 ! E2 satisfies the
inequality (7.1) with � D 0 for all x; y 2 E1. Then there exists a unique additive
function A W E1 ! E2 satisfying the first inequality in (7.2) with � D 0.

Let p 2 Œ0; 1/ be given. By substituting x C y for x and putting y D 0 in (7.1)
we get

�
�
�2f

�x C y

2

�
� f .x C y/

�
�
� � ı C kf .0/k C �

�kxkp C kykp�:
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This inequality, together with (7.1), yields

kf .x C y/ � f .x/ � f .y/k � 2ı C kf .0/k C 2�
�kxkp C kykp�

for all x; y 2 E1. According to Theorems 2.3 and 2.5, there exists a unique additive
function A W E1 ! E2 such that

kf .x/ � A.x/k � 2ı C kf .0/k C 2�

1 � 2p�1 kxkp ;

for any x 2 E1, which is by no means attractive in comparison with the first in-
equality in (7.2).

We also remark that the ideas from the proof of Theorem 7.1 cannot be applied
to the proof of the stability of (7.1) for the case p < 0. An essential process in the
proof of Theorem 7.1 was to put y D 0 in the inequality (7.1) which is impossible
in the case p < 0. The Hyers–Ulam–Rassias stability problem for the case of p < 0
still remains as an open problem.

As discussed at the end of Theorem 2.6, Th. M. Rassias and P. Šemrl have con-
structed a continuous real-valued function in their paper [310] to prove that the
functional inequality

kf .x C y/ � f .x/ � f .y/k � �
�kxk C kyk�

is not stable in the sense of Hyers, Ulam, and Rassias. By using this result, S.-M.
Jung [163] proved that the function constructed by Rassias and Šemrl serves as a
counterexample to Theorem 7.1 for the case p D 1 as follows:

Theorem 7.3. The continuous real-valued function defined by

f .x/ D
�
x log2.x C 1/ .for x � 0/;

x log2 jx � 1j .for x < 0/

satisfies the inequality

ˇ
ˇ
ˇ2f

�x C y

2

�
� f .x/ � f .y/

ˇ
ˇ
ˇ � 2

�jxj C jyj�; (7.3)

for all x; y 2 R, and the image set of jf .x/ � A.x/j=jxj for x ¤ 0 is unbounded
for each additive function A W R ! R.

Proof. The given function f is continuous, odd, and convex on .0;1/. Let x and
y be positive numbers. Since f is convex on .0;1/, it follows from the fact

jf .x C y/ � f .x/ � f .y/j � f .x C y/� 2f
�x C y

2

�
.a/
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that

jf .x C y/ � f .x/ � f .y/j � .x C y/ log2
2C 2x C 2y

2C x C y
< jxj C jyj .b/

for all x; y > 0. Since f is an odd function, .b/ holds true for x; y < 0 as well.
Since .b/ holds true for x D 0, y D 0, or x C y D 0, it only remains to consider
the case when x > 0 and y < 0. Without loss of generality, assume jxj > jyj. By
oddness and convexity of f and by .a/, we get

jf .x C y/� f .x/ � f .y/j D jf .x/ � f .x C y/ � f .�y/j
� f .x/ � 2f .x=2/
D x log2

2x C 2

x C 2

< jxj C jyj;

since xC y and �y are positive numbers. Thus, the inequality .b/ holds true for all
x; y 2 R.

By substituting x=2 and y=2 for x and y in .b/, respectively, and multiplying by
2 both sides, we have

ˇ
ˇ
ˇ2f

�x C y

2

�
� 2f .x=2/� 2f .y=2/

ˇ
ˇ
ˇ � jxj C jyj .c/

for any x; y 2 R. Putting x D y and dividing by 2 both sides in .c/ yield

jf .x/ � 2f .x=2/j � jxj .d/

for x 2 R. By using .c/ we obtain

ˇ
ˇ
ˇ2f

�x C y

2

�
� 2f .x=2/� 2f .y=2/

ˇ
ˇ
ˇ

D
ˇ
ˇ̌
2f
�x C y

2

�
� f .x/ � f .y/C f .x/ � 2f .x=2/C f .y/ � 2f .y=2/

ˇ
ˇ̌

� jxj C jyj

for x; y 2 R. The validity of (7.3) follows immediately from .d/ and the last in-
equality. It is well-known that if an additive function A W R ! R is continuous at
a point, then A.x/ D cx where c is a real number (see Theorem 2.1). It is trivial
that jf .x/ � cxj=jxj ! 1 as x ! 1 for any real number c, and that the image
set of jf .x/ � A.x/j=jxj for x ¤ 0 is also unbounded for every additive function
A W R ! R which is not continuous because the graph of the function A is every-
where dense in R2 (see Theorem 2.2). ut
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It should be remarked that K.-W. Jun, D.-S. Shin, and B.-D. Kim proved the
Hyers–Ulam–Rassias stability of Jensen’s functional equation of Pexider type (see
[155, Corollary 2.4]).

7.2 Stability on a Restricted Domain

In the following lemma, Z. Kominek [224] proved the stability of Jensen’s func-
tional equation on a restricted domain. This lemma is a version for Jensen’s equation
of Lemma 2.29.

Lemma 7.4. Let E be a real Banach space and let N be a given positive integer.
Given c > 0, let f W .�c; c/N ! E be a function satisfying

�
�
�2f

�x C y

2

�
� f .x/ � f .y/

�
�
� � ı

for some ı � 0 and for all x; y 2 .�c; c/N with .1=2/.x C y/ 2 .�c; c/N . Then
there exists a Jensen function J W RN ! E such that

kf .x/ � J.x/k � .25N � 4/ı

for any x 2 .�c; c/N .

Proof. If we define a function f1 W .�c; c/N ! E by f1.x/ D f .x/ � f .0/, then
f1 satisfies the inequality

�
�
�2f1

�x C y

2

�
� f1.x/ � f1.y/

�
�
� � ı .a/

for all x; y 2 .�c; c/N with .1=2/.x C y/ 2 .�c; c/N . Put

An D � � 2�nC1c; 2�nC1c
�N n.�2�nc; 2�nc/N

for each n 2 N . We define a function g W .�c; c/N ! E by

g.x/ D 2�nC1f1
�
2n�1x

�

for all x 2 An and any n 2 N .
Since f1.0/ D 0, putting y D 0 in .a/ yields

k2f1.x=2/� f1.x/k � ı:
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Replacing x with x=2 in the last inequality and multiplying the resulting inequality
by 2 yield

�
�22f1

�
2�2x

� � 2f1.x=2/
�
� � 2ı:

Similarly, we obtain

�
�2kf1

�
2�kx

� � 2k�1f1
�
2�kC1x

��� � 2k�1ı .b/

for all x 2 .�c; c/N and any k 2 N . Hence, using the triangle inequality and
summing the inequalities in .b/ corresponding to k 2 f1; : : : ; n � 1g, we have

�
�2n�1f1

�
2�nC1x

� � f1.x/
�
� � �

2n�1 � 1
�
ı:

Replacing x with 2n�1x and dividing the resulting inequality by 2n�1 yield

kf1.x/ � g.x/k � ı .c/

for all x 2 An. Moreover, we have g.x/ D 2g.x=2/ for any x 2 .�c; c/N . This
fact, together with .a/ and .c/, implies that

kg.x C y/ � g.x/ � g.y/k
D
�
�
�2g

�x C y

2

�
� g.x/ � g.y/

�
�
�

� 2
�
�
�g
�x C y

2

�
� f1

�x C y

2

���
�C kf1.x/ � g.x/k

C kf1.y/ � g.y/k C
�
��2f1

�x C y

2

�
� f1.x/ � f1.y/

�
��

� 5ı

for all x; y 2 .�c; c/N such that .1=2/.x C y/ 2 .�c; c/N .
Due to Lemma 2.29, there exists an additive function A W RN ! E such that

kg.x/ �A.x/k � .5N � 1/5ı .d/

for x 2 .�c; c/N . Define a function J W RN ! E by J.x/ D A.x/C f .0/. Then,
J is a Jensen function. By .c/ and .d/, we have

kf .x/ � J.x/k D kf1.x/ � A.x/k
� kf1.x/ � g.x/k C kg.x/ �A.x/k
� .25N � 4/ı

for each x 2 .�c; c/N . ut
Using the last lemma, Kominek [224] proved a more generalized result on the

Hyers–Ulam stability of Jensen’s equation on a restricted domain.
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Theorem 7.5 (Kominek). Let E be a real Banach space and let N be a given
positive integer. Let D1 be a bounded subset of RN . Assume that there exists an x0
in the interior ofD1 such that the setDDD1�x0 satisfies the following conditions:

(i) .1=2/D � D,
(ii) .�c; c/N � D for some c > 0,

(iii) D � .�2nc; 2nc/N for some nonnegative integer n.

If a function f W D1 ! E satisfies the functional inequality

��
�2f

�x C y

2

�
� f .x/ � f .y/

��
� � ı

for some ı � 0 and for all x; y 2 D1 with .1=2/.x C y/ 2 D1, then there exists a
Jensen function J W RN ! E such that

kf .x/ � J.x/k � �
2n.25N � 3/� 1

�
ı

for each x 2 D1.

Proof. If we define a function f0 W D ! E by f0.x/ D f .x C x0/ for all x 2 D,
then f0 satisfies the inequality

��
�2f0

�x C y

2

�
� f0.x/ � f0.y/

��
� � ı

for all x; y 2 D with .1=2/.x C y/ 2 D.
Similarly, as in the proof of Lemma 7.4, we define the functions f1 and g,

namely,

f1.x/ D f0.x/� f0.0/

for x 2 D and

g.x/ D 2�kC1f1
�
2k�1x

�

for x 2 Ak (k 2 N), where

Ak D �� 2�kC1c; 2�kC1c
�N n� � 2�kc; 2�kc

�N
:

We note that
kf1.x/ � 2nf1.2

�nx/k � �
2n � 1

�
ı .a/

for each x 2 D, and
kf1.x/ � g.x/k � ı .b/

for all x 2 .�c; c/N . Let A W RN ! E be an additive function such that

kg.x/ �A.x/k � .5N � 1/5ı .c/
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for x 2 .�c; c/N (see .d/ in the proof of Lemma 7.4). Taking any x 2 D, by .a/,
.b/, and .c/, we obtain

kf1.x/ �A.x/k � kf1.x/ � 2nf1.2
�nx/k C 2nkf1.2�nx/ � A.2�nx/k

� kf1.x/ � 2nf1.2
�nx/k C 2nkf1.2�nx/ � g.2�nx/k

C 2nkg.2�nx/ �A.2�nx/k
� �

2n.25N � 3/� 1
�
ı:

Now, we put
J.x/ D A.x � x0/C f0.0/

for x 2 RN . Then, J is a Jensen function. By the last inequality, we get

kf .x/ � J.x/k D kf0.x � x0/� A.x � x0/ � f0.0/k
D kf1.x � x0/� A.x � x0/k
� �

2n.25N � 3/� 1
�
ı

for each x 2 D1. ut
Let D be an open and convex subset of RN . A function f W D ! R is said to

be J -convex (convex in the sense of Jensen) if the inequality

2f
�x C y

2

�
� f .x/C f .y/

holds true for all x; y 2 D. If the inequality sign “�” is replaced with “�” in the
above inequality, f is said to be a J -concave function.

We say that a subset T of RN belongs to the class A if and only if every J -
convex function defined on a convex open domain D 	 T bounded above on T is
continuous on D.

The following theorem was presented by Kominek [224].

Theorem 7.6. LetD be an open convex subset of RN and let T � D be a fixed set
belonging to the class A. If f W D ! R is a J -convex function and g W D ! R is
a J -concave function and, moreover,

f .x/ � g.x/

for all x 2 T , then there exist an additive function A W RN ! R, a convex function
F W D ! R, and a concave function G W D ! R such that

f .x/ D A.x/C F.x/;

g.x/ D A.x/CG.x/

for every x 2 D.
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Proof. Put
'.x/ D f .x/ � g.x/

for all x 2 D. We note that ' is a J -convex function bounded above on T . Thus, '
is continuous on D. Let D1 be an open convex and bounded subset of D for which
there exists a constantM > 0 such that

j'.x/j � M .a/

for any x 2 D1. From the definition of ', J -concavity of g, J -convexity of f , and
.a/ it follows that

0 � 2g
�x C y

2

�
� g.x/ � g.y/

D 2f
�x C y

2

�
� f .x/ � f .y/ �

�
2'
�x C y

2

�
� '.x/ � '.y/

�

� 4M

for all x; y 2 D1. In particular,

ˇ
ˇ
ˇ2g

�x C y

2

�
� g.x/ � g.y/

ˇ
ˇ
ˇ � 4M

for all x; y 2 D1.
On account of Theorem 7.5 there exist a Jensen function J W RN ! R and a

nonnegative integer n such that

jg.x/ � J.x/j � �
2n.25N � 3/� 1

�
4M .b/

for each x 2 D1.
Now, we define functions A, F , and G by

A.x/ D J.x/ � J.0/ .x 2 RN /;
G.x/ D g.x/ �A.x/ .x 2 D/;
F.x/ D '.x/CG.x/ .x 2 D/:

Then, A is an additive function. On account of .b/, the function G is J -concave
bounded below on D1, and hence it is concave on D. The function F is convex
since it is continuous and J -convex. Moreover, it is easily indicated that f .x/ D
A.x/C F.x/ and g.x/ D A.x/CG.x/ for any x 2 D. ut

S.-M. Jung [163] proved the stability of Jensen’s functional equation on a re-
stricted and unbounded domain, and applied the result to the study of an asymptotic
behavior of additive functions.

Theorem 7.7 (Jung). Let E1 and E2 be a real normed space and a real Banach
space, respectively. Assume that d > 0 and ı � 0 are given. If a function f W
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E1 !E2 satisfies the functional inequality

��
�2f

�x C y

2

�
� f .x/ � f .y/

��
� � ı (7.4)

for all x; y 2 E1 with kxk C kyk � d , then there exists a unique additive function
A W E1 ! E2 such that

kf .x/ �A.x/k � 5ı C kf .0/k (7.5)

for all x 2 E1.

Proof. Suppose kxk C kyk < d . If x D y D 0, we can choose a z 2 E1 such that
kzk D d . Otherwise, let z D �

1C d=kxk�x for kxk � kyk or z D �
1C d=kyk�y

for kxk < kyk. It is then obvious that

kx � zk C ky C zk � d;

k2zk C kx � zk � d;

kyk C k2zk � d; (a)

ky C zk C kzk � d;

kxk C kzk � d:

From (7.4), .a/, and the relation

2f
�x C y

2

�
� f .x/ � f .y/

D 2f
�x C y

2

�
� f .x � z/ � f .y C z/

�
�
2f
�x C z

2

�
� f .2z/ � f .x � z/

�
C 2f

�y C 2z

2

�
� f .y/ � f .2z/

�
�
2f
�y C 2z

2

�
� f .y C z/ � f .z/

�
C 2f

�x C z

2

�
� f .x/ � f .z/;

we get
�
��2f

�x C y

2

�
� f .x/ � f .y/

�
�� � 5ı: .b/

In view of (7.4) and .b/, the function f satisfies the inequality .b/ for all x; y 2 E1.
Therefore, it follows from .b/ and Theorem 7.1 that there exists a unique additive
function A W E1 ! E2 satisfying the inequality (7.5) for all x 2 E1. ut

Using the result of Theorem 7.7, Jung [163] proved an asymptotic behavior of
additive functions.

Corollary 7.8. Suppose a function f W E1 ! E2 satisfies the condition f .0/ D 0,
where E1 and E2 are a real normed space and a real Banach space, respectively.
The function f is additive if and only if
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�
�
�2f

�x C y

2

�
� f .x/ � f .y/

�
�
� ! 0 as kxk C kyk ! 1: (7.6)

Proof. On account of (7.6), there exists a sequence fıng monotonically decreasing
to 0 such that �

��2f
�x C y

2

�
� f .x/ � f .y/

�
�� � ın .a/

for all x; y 2 E1 with kxk C kyk � n. It then follows from .a/ and Theorem 7.7
that there exists a unique additive function An W E1 ! E2 such that

kf .x/ �An.x/k � 5ın .b/

for all x 2 E1. Let `;m 2 N satisfy m � `. Obviously, it follows from .b/ that

kf .x/ � Am.x/k � 5ım � 5ı`

for all x 2 E1 since fıng is a monotonically decreasing sequence. The uniqueness
of An implies Am D A`. Hence, by letting n ! 1 in .b/, we conclude that f is
additive. The reverse assertion is trivial. ut

7.3 Fixed Point Method

Using the fixed point method (Theorem 2.43), L. Cădariu and V. Radu [55] proved
the Hyers–Ulam–Rassias stability of the Jensen’s functional equation.

Theorem 7.9 (Cădariu and Radu). Let E1 and E2 be a .real or complex/ vector
space and a Banach space, respectively. Assume that a function f W E1 ! E2
satisfies f .0/ D 0 and the inequality

�
��2f

�x C y

2

�
� f .x/ � f .y/

�
�� � '.x; y/ (7.7)

for all x; y 2 E1, where ' W E21 ! Œ0;1/ is a given function. Moreover, assume
that there exists a positive constant L < 1 such that

'.x; 0/ � Lqi'.x=qi ; 0/ (7.8)

for any x 2 E1, where q0 D 2 and q1 D 1=2. If ' satisfies

lim
n!1 q�n

i '.qni x; q
n
i y/ D 0 (7.9)

for all x; y 2 E1, then there exists a unique additive function A W E1 ! E2 such
that

kf .x/ �A.x/k � L1�i

1 �L'.x; 0/ (7.10)

for any x 2 E1.
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Proof. Let us define

X D ˚
g W E1 ! E2 j g.0/ D 0

�

and introduce the generalized metric d on X :

d.g; h/ D inf
˚
C 2 Œ0;1� j kg.x/ � h.x/k � C'.x; 0/ for all x 2 E1

�
:

Then, .X; d/ is complete (ref. [181, Theorem 2.1]).
We now define an operatorƒ W X ! X by

.ƒg/.x/ D .1=qi /g.qix/:

For any g; h 2 X , d.g; h/ � C implies that

kg.x/ � h.x/k � C'.x; 0/

or
�
�.1=qi /g.qix/ � .1=qi /h.qix/

�
� � .1=qi/C'.qix; 0/

for all x 2 E1. It follows from (7.8) that

�
�.1=qi /g.qix/ � .1=qi /h.qix/

�
� � LC'.x; 0/

for any x 2 E1. That is, if d.g; h/ � C , then d.ƒg;ƒh/ � LC . Therefore,
we conclude that d.ƒg;ƒh/ � Ld.g; h/ for all g; h 2 X . Indeed, ƒ is strictly
contractive on X with the Lipschitz constant L.

Assume that i D 0. If we set x D 2t and y D 0 in (7.7), then it follows from
(7.8) that

kf .t/ � .1=2/f .2t/k � .1=2/'.2t; 0/ � L'.t; 0/

for each t 2 E1, i.e., d.f;ƒf / � L D L1 < 1.
For i D 1, we put y D 0 in (7.7) to obtain

k2f .x=2/� f .x/k � '.x; 0/

for all x 2 E1. Thus, d.f;ƒf / � 1 D L0 < 1.
In both cases we can apply Theorem 2.43 and conclude that there exists a func-

tion A W E1 ! E2 with A.0/ D 0 such that

A.2x/ D 2A.x/ .a/
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for any x 2 E1 and A is the unique function satisfying .a/ in the set

X� D ˚
g 2 X j d.f; g/ < 1�

;

i.e., there exists a constant C > 0 such that

kA.x/ � f .x/k � C'.x; 0/ .b/

for all x 2 E1.
Moreover, according to Theorem 2.43 .i/, d.ƒnf;A/ ! 0 as n ! 1, which

implies that
A.x/ D lim

n!1 q�n
i f .qni x/ .c/

for each x 2 E1. Due to Theorem 2.43 .iii/, we have

d.f;A/ � 1

1 � L
d.f;ƒf / or d.f;A/ � L1�i

1 � L
;

which implies the validity of (7.10).
If we replace x and y in (7.7) with 2qni x and 2qni y, respectively, then we get

�
�q�n
i f

�
qni .x C y/

� � .1=2/q�n
i f .2qni x/ � .1=2/q�n

i f .2qni y/
�
�

� .1=2/q�n
i '.2qni x; 2q

n
i y/

for all x; y 2 E1. In view of (7.9), if we let n ! 1 in the last inequality, then we
obtain

A.x C y/ D A.x/CA.y/

for any x; y 2 E1. ut

7.4 Lobačevskiĭ’s Functional Equation

In this section, the superstability of Lobačevskiĭ’s functional equation

f
�x C y

2

�2 D f .x/f .y/ (7.11)

will be investigated. P. Găvruta contributed to the following theorem (ref. [114]).

Theorem 7.10. Let G be a 2-divisible abelian group. If a function f W G ! C
satisfies the inequality

ˇ
ˇ
ˇ̌f
�x C y

2

�2 � f .x/f .y/

ˇ
ˇ
ˇ̌ � ı (7.12)
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for all x; y 2 G and for some ı > 0, then either

jf .x/j � .1=2/
�jf .0/j C .jf .0/j2 C 4ı/1=2

�

for all x 2 G, or f is a solution of Lobačevskiĭ’s functional equation (7.11).

Proof. Suppose there exists an x0 2 G with

jf .x0/j > .1=2/
�jf .0/j C .jf .0/j2 C 4ı/1=2

�
: .a/

If we replace x and y in (7.12) with 2x and 0, respectively, then we have

ˇ
ˇf .x/2 � f .0/f .2x/ˇˇ � ı .b/

for all x 2 G. If we had f .0/ D 0, then it would follow from .b/ that jf .x/j �p
ı for any x 2 G. However, by .a/, we get jf .x0/j >

p
ı, which leads to a

contradiction. Hence, we conclude that f .0/ ¤ 0.
In view of .b/, we obtain

jf .0/jjf .2x/j D ˇ
ˇf .x/2 C �

f .0/f .2x/� f .x/2
�ˇˇ

� jf .x/j2 � ˇ
ˇf .0/f .2x/ � f .x/2

ˇ
ˇ

� jf .x/j2 � ı

for each x 2 G. Thus, we have

jf .2x/j � jf .x/j2 � ı
jf .0/j .c/

for all x 2 G. We now set

˛ D .1=2/
�jf .0/j C .jf .0/j2 C 4ı/1=2

�
and ˇ D jf .x0/j � ˛: .d/

It then follows from .a/ and .d/ that

jf .x0/j D ˛ C ˇ and ˇ > 0:

Now, we will prove that

jf .2nx0/j � ˛ C 2nˇ .e/
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for all n 2 N . Putting x D x0 in .c/ yields

jf .2x0/j � .˛ C ˇ/2 � ı

jf .0/j D ˛ C 2˛ˇ C ˇ2

jf .0/j � ˛ C 2ˇ

since

˛2 D jf .0/j˛ C ı; ˛ � jf .0/j; and ˇ > 0:

That is, the inequality .e/ is true for n D 1. Assume that .e/ is true for some integer
n > 0. If we put x D 2nx0 in .c/, then

ˇ̌
f
�
2nC1x0

�ˇ̌ � .˛ C 2nˇ/2 � ı
jf .0/j D ˛ C 2nC1˛ˇ C 22nˇ2

jf .0/j � ˛ C 2nC1ˇ;

which ends the proof of .e/.
We set xn D 2nx0 for any n 2 N . Then, by (7.12), we get

ˇ
ˇ
ˇ̌f .xn/f .x/ � f

�x C xn

2

�2ˇˇ
ˇ̌ � ı

for all x 2 G and n 2 N . Hence, it follows from .e/ that

f .x/ D lim
n!1f .xn/

�1f
�x C xn

2

�2

for all x 2 G. Hence, we obtain

f .x/f .y/ D lim
n!1

	
f .xn/

�1f
�x C xn

2

�
f
�y C xn

2

�
2
;

f
�x C y

2

�2 D
	

lim
n!1f .xn/

�1f
�x C y C 2xn

4

�2
2
:

( f )

On the other hand, it follows from (7.12) that

ˇ̌
ˇ
ˇf .xn/

�1
	
f
�x C xn

2

�
f
�y C xn

2

�
� f

�x C y C 2xn

4

�2
ˇ̌
ˇ
ˇ � ı=jf .xn/j

for all x; y 2 G and n 2 N . If we let n ! 1 in the last inequality, then .f / implies
that

f
�x C y

2

�2 D f .x/f .y/

for any x; y 2 G. ut
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We introduce a theorem concerning the Ger type stability of Lobačevskiĭ’s func-
tional equation (7.11) presented by S.-M. Jung [170].

Lemma 7.11. Let .G;C/ be a cancellative abelian group which is uniquely
2-divisible, and let " 2 .0; 1=8/. If a function f W G ! R satisfies the congruence

2f
�x C y

2

�
� f .x/ � f .y/ 2 .�"; "/C Z (7.13)

for all x; y 2 G, then there exists a function p W G ! R such that

p.x C y/� p.x/ � p.y/ 2 Z

for any x; y 2 G, and

jf .x/ � p.x/ � f .0/j � 2"

for all x 2 G.

Proof. If we put y D 0 in (7.13), then we have

2f .x=2/� f .x/ � f .0/ 2 .�"; "/C Z .a/

for every x 2 G. Let us define a function g W G ! R by g.x/ D f .x/ � f .0/.
It then follows from (7.13) and .a/ that

g.x C y/ � g.x/ � g.y/
D 2g

�x C y

2

�
� g.x/ � g.y/C g.x C y/ � 2g

�x C y

2

�

2 .�2"; 2"/C Z

for any x; y 2 G.
According to Corollary 2.48 (or [170, Theorem 3]), there exists a function p W

G ! R such that

p.x C y/� p.x/ � p.y/ 2 Z

for any x; y 2 G, and

jg.x/ � p.x/j � 2"

for all x 2 G, which ends the proof of our theorem. ut
Let ı0 
 0:344446::: be one of the real solutions of the equation

x
p
5 � 4x D 1 � x:
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More precisely, we define ı0 by

ı0 D 1

3
C 1

3

 
5
p
10

4

!1=3

�
	

cos
� C 4�

3
C i sin

� C 4�

3
C cos

2� � �
3

C i sin
2� � �
3



;

where � 
 91:812153:::ı satisfying sin � D .9=10/
p
37=30 .

Theorem 7.12. Let E be a real normed space and let ı 2 Œ0; ı0/ be a constant. If a
function f W E ! Cnf0g satisfies the inequality

ˇ
ˇ
ˇ
ˇf
�x C y

2

�2
f .x/�1f .y/�1 � 1

ˇ
ˇ
ˇ
ˇ � ı (7.14)

for all x; y 2 E , then there exists a unique exponential function F W E ! Cnf0g
such that

max
˚ˇˇf .x/f .0/�1F.x/�1 � 1

ˇ
ˇ;
ˇ
ˇf .0/F.x/f .x/�1 � 1

ˇ
ˇ�

� ı

1 � ı .5 � 4ı/1=2
(7.15)

for all x 2 E .

Proof. It follows from (7.14) that

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇf
�
xCy
2

�ˇˇ
ˇ
2

jf .x/jjf .y/j exp

	
i
�
2 argf

�x C y

2

�
� argf .x/ � argf .y/

�

� 1

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

� ı

for all x; y 2 E . Therefore, we obtain

1 � ı �
ˇ
ˇ
ˇf
�x C y

2

�ˇˇ
ˇ
2jf .x/j�1jf .y/j�1 � 1C ı .a/

and

2 argf
�x C y

2

�
� argf .x/ � argf .y/ 2 � � sin�1 ı; sin�1 ı

�C 2�Z

for any x; y 2 E .
We define a function g W E ! R by g.x/ D .1=2�/ argf .x/. Since ı < 1=

p
2

means .1=2�/ sin�1 ı < 1=8, we can apply Lemma 7.11 to this case. Thus, there
exists a function p W E ! R such that

p.x C y/� p.x/ � p.y/ 2 2�Z .b/
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and

j argf .x/ � p.x/ � argf .0/j � 2 sin�1 ı .c/

for any x; y 2 E .
If we define a function h W E ! R by h.x/ D ln jf .x/j, it then follows from .a/

that
ˇ
ˇ
ˇ2h
�x C y

2

�
� h.x/ � h.y/

ˇ
ˇ
ˇ � � ln.1 � ı/

for x; y 2 E . According to Theorem 7.1, there exists a unique additive function
a W E ! R such that

jh.x/ � a.x/ � h.0/j � � ln.1 � ı/ .d/

for each x 2 E .
We now define a function F W E ! Cnf0g by

F.x/ D exp
�
a.x/C ip.x/

�
: .e/

From the additivity of a, .b/, and .e/, we can easily show that F is an exponential
function.

We observe

ˇ
ˇf .x/f .0/�1F.x/�1 � 1ˇˇ

D ˇ
ˇ exp

�
h.x/ � a.x/ � h.0/

�
exp

�
i.argf .x/ � p.x/ � argf .0//

� � 1ˇˇ:

In view of .c/ and .d/, the complex number f .x/f .0/�1F.x/�1 belongs to the set

ƒ D ˚
	 2 C j 1 � ı � j	j � .1 � ı/�1 and � 2 sin�1 ı � arg	 � 2 sin�1 ı

�
:

From this fact, it is not difficult to see

ˇ
ˇf .x/f .0/�1F.x/�1 � 1ˇˇ � ı

1� ı
.5 � 4ı/1=2

for every x 2 E . The inequality for jf .0/F.x/f .x/�1 �1j in (7.15) may be proved
in a similar way.

The hypothesis for ı means that there is a constant 0 < ˇ < 1 with

ı

1 � ı .5 � 4ı/1=2 < ˇ < 1: .f /
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Let F 0 W E ! Cnf0g be another exponential function satisfying the inequality
(7.15) instead of F . Since

F.2nx/ D F.x/2
n

and F 0.2nx/ D F 0.x/2n

for all x 2 E and for any n 2 N , it follows from (7.15) and .f / that

F.x/

F 0.x/
D
	
F.2nx/

F 0.2nx/


2�n

D
	
f .0/F.2nx/

f .2nx/


2�n	
f .2nx/

f .0/F 0.2nx/


2�n

! 1 as n ! 1;

implying the uniqueness of F . ut
The stability problem of Lobačevskiĭ’s functional equation on restricted domains

and an asymptotic property of the exponential functions were investigated in [170].



Chapter 8
Quadratic Functional Equations

So far, we have discussed the stability problems of functional equations in
connection with additive or linear functions. In this chapter, the Hyers–Ulam–
Rassias stability of quadratic functional equations will be proved. Most mathemati-
cians may be interested in the study of the quadratic functional equation since the
quadratic functions are applied to almost every field of mathematics. In Section 8.1,
the Hyers–Ulam–Rassias stability of the quadratic equation is surveyed. The stabil-
ity problems for that equation on a restricted domain are discussed in Section 8.2,
and the Hyers–Ulam–Rassias stability of the quadratic functional equation will be
proved by using the fixed point method in Section 8.3. In Section 8.4, the Hyers–
Ulam stability of an interesting quadratic functional equation different from the
“original” quadratic functional equation is proved. Finally, the stability problem of
the quadratic equation of Pexider type is discussed in Section 8.5.

8.1 Hyers–Ulam–Rassias Stability

The quadratic function f .x/ D cx2 .x 2 R/, where c is a real constant, clearly
satisfies the equation

f .x C y/C f .x � y/ D 2f .x/C 2f .y/: (8.1)

Hence, the equation (8.1) is called the quadratic functional equation.
There are a number of functional equations considered as quadratic and one of

them will be introduced in Section 8.4. A quadratic function implies a solution of
the quadratic functional equation (8.1).

A function f W E1 ! E2 between real vector spaces is a quadratic function if
and only if there exists a symmetric biadditive function B W E21 ! E2 such that
f .x/ D B.x; x/. (A function B W E21 ! E2 is called biadditive if and only if B is
additive in each variable.) If f is a quadratic function, then the biadditive function
B is sometimes called the polar of f and given by

B.x; y/ D .1=4/
�
f .x C y/ � f .x � y/�:

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 8, c� Springer Science+Business Media, LLC 2011
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F. Skof [331] was the first person to prove the Hyers–Ulam stability of the
quadratic functional equation (8.1) for functions f W E1 ! E2 where E1 and E2
are a normed space and a Banach space, respectively. P. W. Cholewa [70] demon-
strated that Skof’s theorem is also valid if E1 is replaced with an abelian group G.

Theorem 8.1 (Skof). Let G be an abelian group and let E be a Banach space. If a
function f W G ! E satisfies the inequality

kf .x C y/C f .x � y/� 2f .x/ � 2f .y/k � ı

for some ı � 0 and for all x; y 2 G, then there exists a unique quadratic function
Q W G ! E such that

kf .x/ �Q.x/k � .1=2/ı

for any x 2 G.

I. Fenyö [102] improved Theorem 8.1 by replacing the bound .1=2/ı with the
best possible one, .1=3/

�
ı C kf .0/k�. The proof of Theorem 8.1 is a special case

of that of Theorem 8.3 by S. Czerwik [87], and hence, it will be omitted. Before
starting the theorem of Czerwik, we need a lemma provided by the same author.

Lemma 8.2. Let E1 and E2 be normed spaces. Assume that there exist ı; � � 0

and p 2 R such that a function f W E1 ! E2 satisfies the inequality

kf .x C y/C f .x � y/ � 2f .x/ � 2f .y/k � ı C �
�kxkp C kykp� (8.2)

for all x; y 2 E1nf0g. Then for x 2 E1nf0g and n 2 N

kf .2nx/ � 4nf .x/k
� .1=3/

�
4n � 1

�
.ı C c/C 2 � 4n�1�kxkp�1C aC � � � C an�1� (8.3)

and

kf .x/ � 4nf .2�nx/k
� .1=3/

�
4n � 1

�
.ı C c/C 21�p�kxkp�1C b C � � � C bn�1�; (8.4)

where a D 2p�2, b D 22�p; and c D kf .0/k.

Proof. Putting x D y ¤ 0 in (8.2) yields

kf .2x/ � 4f .x/k � kf .0/k C ı C 2�kxkp

which proves (8.3) for n D 1. Assume now that (8.3) holds true for each k � n and
x 2 E1nf0g. Then, for nC 1, we have
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�
�f
�
2nC1x

� � 4nC1f .x/
�
�

� kf .2 � 2nx/ � 4f .2nx/k C 4kf .2nx/ � 4nf .x/k
� ı C c C 2�k2nxkp C .4=3/.ıC c/.4n � 1/

C 2 � 4n�kxkp�1C a C � � � C an�1�

D .1=3/
�
4nC1 � 1�.ı C c/C 2 � 4n�kxkp�1C a C � � � C an

�
;

which proves the validity of the inequality (8.3).
Similarly, taking x D y D t=2, we can verify the inequality (8.4) for n D 1.

Applying the induction principle we get the result for all n 2 N , which ends the
proof. ut

S. Czerwik [87] has proved the Hyers–Ulam–Rassias stability of the quadratic
functional equation (8.1).

Theorem 8.3 (Czerwik). Let E1 and E2 be a normed space and a Banach space,
respectively. If a function f W E1 ! E2 satisfies the inequality (8.2) for some
ı; � � 0, p < 2 and for all x; y 2 E1nf0g, then there exists a unique quadratic
functionQ W E1 ! E2 such that

kf .x/ �Q.x/k � .1=3/.ıC c/C 2.4� 2p/�1�kxkp (8.5)

for any x 2 E1nf0g, where c D kf .0/k.

Proof. Let us define

Qn.x/ D 4�nf .2nx/ .a/

for x 2 E1 and n 2 N . Then fQn.x/g is a Cauchy sequence for every x 2 E1.
Really, for x D 0 it is trivial. Let x 2 E1nf0g. For n > m we obtain by (8.3)

kQn.x/ �Qm.x/k D 4�nkf .2n�m � 2mx/ � 4n�mf .2mx/k
� 4�n3�1.4n�m � 1/.ı C c/

C 2 � 4�m�1�k2mxkp�1C aC � � � C an�m�1�

and hence

kQn.x/ �Qm.x/k � 3�14�m.ı C c/C 2m.p�2/�1.1� a/�1�kxkp : .b/

The assumption p < 2 implies that fQn.x/g is a Cauchy sequence. Since E2 is
complete, we can define

Q.x/ D lim
n!1Qn.x/

for any x 2 E1.
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We will check that Q is a quadratic function. It is clear for x D y D 0, since
Q.0/ D 0. For y D 0 and x ¤ 0 we have

Q.x C 0/CQ.x � 0/� 2Q.x/ � 2Q.0/ D 0:

Let us now consider the case x; y 2 E1nf0g. Then,

kQn.x C y/CQn.x � y/ � 2Qn.x/ � 2Qn.y/k
D 4�n��f

�
2n.x C y/

�C f
�
2n.x � y/

� � 2f .2nx/ � 2f .2ny/��
� 4�n�ı C �

�k2nxkp C k2nykp��

D 4�nı C 2n.p�2/�
�kxkp C kykp�:

By letting n ! 1 we get the equality

Q.x C y/CQ.x � y/� 2Q.x/� 2Q.y/ D 0:

If we put x D y in the last equality, then we get Q.2x/ D 4Q.x/ for each x 2 E1.
Moreover, putting y D �x yields Q.�x/ D Q.x/ for x 2 E1. Therefore, if x D 0

and y ¤ 0, then
Q.y/CQ.�y/ � 2Q.0/� 2Q.y/ D 0;

i.e., Q is a quadratic function.
The inequality (8.5) immediately follows from the inequality (8.3).
To prove the uniqueness, assume that there exist two quadratic functions qi W

E1 ! E2 .i 2 f1; 2g/ such that

kf .x/ � qi .x/k � ci C bikxkp

for any x 2 E1nf0g and i 2 f1; 2g, where ci , bi .i 2 f1; 2g/ are given nonnegative
constants. Then,

qi .2
nx/ D 4nqi .x/

for any x 2 E1, n 2 N , and i 2 f1; 2g. Now, we have

kq1.x/ � q2.x/k � 4�n�kq1.2nx/ � f .2nx/k C kf .2nx/ � q2.2
nx/k�

� 4�n.c1 C c2/C 2n.p�2/.b1 C b2/kxkp :

If we let n ! 1, we get q1.x/ D q2.x/ for all x 2 E1. ut
Czerwik [87] also proved the following theorem.

Theorem 8.4 (Czerwik). Let E1 and E2 be a normed space and a Banach space,
respectively. If a function f W E1 ! E2 satisfies the inequality

kf .x C y/C f .x � y/� 2f .x/� 2f .y/k � �
�kxkp C kykp� (8.6)
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for some � � 0, p > 2 and for all x; y 2 E1, then there exists a unique quadratic
functionQ W E1 ! E2 such that

kf .x/ �Q.x/k � 2.2p � 4/�1�kxkp (8.7)

for all x 2 E1.

Proof. Define the sequence

Qn.x/ D 4nf .2�nx/ .a/

for all x 2 E1 and all n 2 N . Since f .0/ D 0, applying (8.4) yields

kQn.x/ �Qm.x/k � 21�p2m.2�p/.1 � b/�1�kxkp .b/

for any x 2 E1 and n > m. Hence, the assumption p > 2 implies that fQn.x/g is a
Cauchy sequence for every x 2 E1. Define

Q.x/ D lim
n!1Qn.x/

for each x 2 E1. Then, in a similar way as in the proof of Theorem 8.3, we may
verify that Q is a quadratic function. Using (8.4) again, we obtain (8.7).

It is not difficult to prove that

Q.rx/ D r2Q.x/ .c/

for all x 2 E1 and for all r 2 Q. Assume now that there exist two quadratic
functions qi W E1 ! E2 .i 2 f1; 2g/ such that

kf .x/ � qi .x/k � dikxkp

for all x 2 E1, where di , i 2 f1; 2g, are nonnegative constants. By .c/ we get

kq1.x/ � q2.x/k D 4nkq1.2�nx/ � q2.2
�nx/k

� 4n.d1 C d2/k2�nxkp
D 2n.2�p/.d1 C d2/kxkp ;

from which we conclude that q1 D q2. ut
The following corollary is derived from the book [137] written by D. H. Hyers,

G. Isac, and Th. M. Rassias.

Corollary 8.5. If in Theorems 8.3 and 8.4 the function f is continuous onE1, then
the quadratic functionQ is also continuous at each point x 2 E1nf0g. When p > 0,
this restriction is unnecessary.
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Proof. Suppose that f is continuous at each point x 2 E1 and that x0 2 E1nf0g.
Put s D kx0k=2 and define an open ball by

B.x0; s/ D ˚
x 2 E1 j kx � x0k < s

�
:

For x 2 B.x0; s/ we have s < kxk < 3s. By letting n ! 1 in inequalities .b/’s in
the proofs of Theorems 8.3 and 8.4, we get

kQ.x/ �Qm.x/k

�
(
.1=3/4�m.ı C c/C 2m.p�2/�1.1� a/�1�kxkp .for p < 2/;

21�p2m.2�p/.1 � b/�1�kxkp .for p > 2/:

For x 2 B.x0; s/ we have sp > kxkp > .3s/p when p < 0, while the inequalities
are reversed when p > 0. Consequently,Qm converges uniformly toQ on B.x0; s/
as m ! 1. Since each function Qm is continuous on B.x0; s/, it follows that the
limitQ is also continuous onB.x0; s/. Thus, the quadratic functionQ is continuous
at any point x0 ¤ 0 in E1. Obviously, the restriction x0 ¤ 0 is not needed when
p > 0. ut

It should be noted that Czerwik [87] proved the following corollary under the
weaker assumption that f .tx/ is Borel measurable in t for each fixed x 2 E1.

Corollary 8.6. LetE1 andE2 be a normed space and a Banach space, respectively.
If a function f W E1 ! E2 satisfies either the inequality (8.2) for x; y ¤ 0 or the
inequality (8.6) for x; y 2 E1, according to p < 2 or p > 2; and if moreover
f .tx/ is continuous in t for each fixed x 2 E1, then the unique quadratic function
Q W E1 ! E2 defined by

Q.x/ D
(

lim
n!14

�nf .2nx/ .for p < 2/;

lim
n!14

nf .2�nx/ .for p > 2/

satisfies Q.tx/ D t2Q.x/ for all t 2 R and x 2 E1.

Proof. It is obvious that Q.rx/ D r2Q.x/ holds true for all x 2 E1 and for all
r 2 Q (ref. .c/ in the proof of Theorem 8.4). To prove that Q is homogeneous of
degree 2 for all real numbers as well, it suffices to prove that Q.tx/ is continuous
in t for each fixed x 2 E1. By hypothesis, f .tx/ is continuous in t for each fixed
x in E1. Apply Corollary 8.5 to the case where E1 D R to show that if x ¤ 0

and t0 ¤ 0, then Q.tx/ is continuous at t D t0. Thus, Q.t0x/ D t20Q.x/ for all
x ¤ 0 and t0 ¤ 0. But this equality is also valid for x D 0 or t0 D 0. Therefore, we
conclude that Q.tx/ D t2Q.x/ holds true for all t 2 R and x 2 E1. ut

Czerwik [87] presented an example concerning the special case p D 2. (This
case was excluded in Theorems 8.3 and 8.4.) This is a modification of the example
contained in [112] (or see [137]).



8.1 Hyers–Ulam–Rassias Stability 181

Theorem 8.7. Let us define a function f W R ! R by

f .x/ D
1X

nD0
4�n'.2nx/;

where the function ' W R ! R is given by

'.x/ D
�
a .for jxj � 1/;

ax2 .for jxj < 1/

with a positive number a. The function f satisfies the inequality

ˇ
ˇf .x C y/C f .x � y/� 2f .x/ � 2f .y/ˇˇ � 32a

�
x2 C y2

�
(8.8)

for all x; y 2 R. Moreover, there exists no quadratic functionQ W R ! R such that
the image set of jf .x/ �Q.x/j=x2 .x ¤ 0/ is bounded.

Proof. For x D y D 0 or for x; y 2 R such that x2 C y2 � 1=4, it is clear that
the inequality (8.8) holds true because f is bounded by .4=3/a. Consider the case
0 < x2 C y2 < 1=4. Then there exists a k 2 N such that

4�k�1 � x2 C y2 < 4�k; .a/

where 4k�1x2 < 1=4 and 4k�1y2 < 1=4 and consequently

2k�1x; 2k�1y; 2k�1.x C y/; 2k�1.x � y/ 2 .�1; 1/:

Therefore, for each n 2 f0; 1; : : : ; k � 1g, we have

2nx; 2ny; 2n.x C y/; 2n.x � y/ 2 .�1; 1/

and

'
�
2n.x C y/

�C '
�
2n.x � y/� � 2'.2nx/ � 2'.2ny/ D 0

for n 2 f0; 1; : : : ; k � 1g. Using .a/ we obtain

ˇ̌
f .x C y/C f .x � y/ � 2f .x/� 2f .y/

ˇ̌

�
1X

nD0
4�nˇˇ'

�
2n.x C y/

�C '
�
2n.x � y/� � 2'.2nx/ � 2'.2ny/

ˇ
ˇ

�
1X

nDk
4�n6a D 2 � 41�ka � 32a

�
x2 C y2

�
;

i.e., the inequality (8.8) holds true.
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Assume that there exist a quadratic function Q W R ! R and a constant b > 0

such that

jf .x/ �Q.x/j � bx2

for all x 2 R. Since Q is locally bounded, it is of the form Q.x/ D cx2 .x 2 R/,
where c is a constant (see [230]). Therefore, we have

jf .x/j � �
b C jcj�x2 .b/

for all x 2 R. Let k 2 N satisfy ka > b C jcj. If x 2 .0; 21�k/, then 2nx 2 .0; 1/

for n � k � 1 and we have

f .x/ D
1X

nD0
4�n'.2nx/ �

k�1X

nD0
a4�n.2nx/2 D kax2 >

�
b C jcj�x2;

which in comparison with .b/ is a contradiction. ut
The results of Theorems 8.3 and 8.4 are immediate consequences of the following

stability result, which was presented by C. Borelli and G. L. Forti [24] for a wide
class of functional equations which contains the quadratic functional equation as a
particular case:

LetG be an abelian group,E a Banach space, and let f W G ! E be a function
with f .0/ D 0 and satisfy the inequality

kf .x C y/C f .x � y/ � 2f .x/� 2f .y/k � '.x; y/

for all x; y 2 G. Assume that one of the series

1X

iD1
2�2i'

�
2i�1x; 2i�1x

�
and

1X

iD1
22.i�1/'

�
2�ix; 2�ix

�

converges for each x 2 G and denote by ˆ.x/ its sum. If

2�2i'
�
2i�1x; 2i�1y

� ! 0 or 22.i�1/'
�
2�ix; 2�iy

� ! 0;

as i ! 1, then there exists a unique quadratic functionQ W G ! E such that

kf .x/ �Q.x/k � ˆ.x/

for any x 2 G.
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8.2 Stability on a Restricted Domain

Before initially proving the stability of the quadratic functional equation for func-
tions defined on a restricted domain, we discuss the stability problem for biadditive
functions on a restricted domain.

F. Skof and S. Terracini [336] proved the following stability theorem for sym-
metric biadditive functions based on results from F. Skof [330].

Theorem 8.8. Let E be a Banach space and let c; ı > 0 be given. If a symmetric
function f W Œ0; c/2 ! E satisfies the inequality

kf .x1 C x2; y/ � f .x1; y/ � f .x2; y/k � ı

for all x1; x2; y 2 Œ0; c/ with x1 C x2 < c, then there exists a symmetric and
biadditive function B W Œ0; c/2 ! E such that

kf .x; y/ � B.x; y/k � 9ı

for all x; y 2 Œ0; c/.
Proof. By hypothesis, for each fixed y 2 Œ0; c/, the function fy.x/ D f .x; y/

satisfies the inequality

kfy.x1 C x2/� fy.x1/� fy.x2/k � ı

for all x1; x2 2 Œ0; c/ with x1 C x2 < c. Following the proof of Lemma 2.28, we
define the function f �

y W Œ0;1/ ! E for fixed y by

f �
y .x/ D fy.�/C nfy.c=2/

for x D �C .c=2/n, n 2 N and 0 � � < c=2. Thus, we have

kfy.x/ � f �
y .x/k � ı .a/

for any x 2 Œ0; c/. This function is extended to R by putting f �
y .x/ D �f �

y .�x/
when x < 0. It follows that f �

y .0 � y < c/ satisfies

kf �
y .x1 C x2/� f �

y .x1/� f �
y .x2/k � 2ı

for all x1; x2 2 R (cf. .b/ in the proof of Lemma 2.28), and hence, by Theorem 2.3,
there exists a unique additive function

A�
y.x/ D lim

n!1 2�nf �
y .2

nx/;
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for all x 2 R and y 2 Œ0; c/, such that

kf �
y .x/ �A�

y.x/k � 2ı .b/

for any x 2 R and y 2 Œ0; c/.
Now, let us define A.x; y/ D A�

y.x/ for x; y 2 Œ0; c/. A.x; y/ is additive in the
first variable.

Fix x; y; z 2 Œ0; c/ with yC z < c. Put 2nx D �nC .c=2/kn, where kn 2 N and
0 � �n < c=2, so that kn D .2=c/.2nx � �n/. Then,

A.x; y C z/ � A.x; y/ �A.x; z/
D lim

n!1 2�n�f �
yCz.2

nx/ � f �
y .2

nx/ � f �
z .2

nx/
�

D lim
n!1 2�n�fyCz.�n/ � fy.�n/� fz.�n/

�

C lim
n!1 2�nkn

�
fyCz.c=2/� fy.c=2/� fz.c=2/

�

D 2.x=c/
�
fyCz.c=2/� fy.c=2/� fz.c=2/

�
:

Hence,

kA.x; y C z/� A.x; y/ � A.x; z/k � 2ı

for all x; y; z 2 Œ0; c/ with y C z < c.
Next, we extend A to a functionA0 W Œ0; c/� R ! E . With x 2 Œ0; c/ and y � 0,

let y D �C .c=2/n, where n 2 N and 0 � � < c=2; and define A0 by

A0.x; y/ D A.x;�/C nA.x; c=2/

and put

A0.x; y/ D �A0.x;�y/
for y < 0. In view of .b/ and .a/ in the proof of Lemma 2.28 and the first part of
the proof of Lemma 2.27, we obtain

kA0.x; y C z/ � A0.x; y/ � A0.x; z/k � 4ı

for all y; z 2 R and

kA.x; y/ � A0.x; y/k � 2ı .c/

for all x; y 2 Œ0; c/. Also, for each y 2 R, A0 is additive in the first variable, i.e.,

A0.x1 C x2; y/ D A0.x1; y/C A0.x2; y/ .d/

for x1; x2 2 Œ0; c/ with x1 C x2 < c, since A has this property.
For each fixed x 2 Œ0; c/, it follows from Theorem 2.3 that the function

B.x; y/ D lim
n!1 2�nA0.x; 2ny/ .e/
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is additive in y and satisfies

kA0.x; y/ � B.x; y/k � 4ı .f /

for all x 2 Œ0; c/ and y 2 R. By .d/ and .e/ we have

B.x1 C x2; y/ D B.x1; y/C B.x2; y/

for x1; x2 2 Œ0; c/ with x1 C x2 < c. By .a/, .b/, .c/; and .f /, we obtain

kf .x; y/ � B.x; y/k � 9ı .g/

for x; y 2 Œ0; c/.
Since f is symmetric, it follows from .g/ that

kB.x; y/ � B.y; x/k � 18ı

for any x; y 2 Œ0; c/. If y D 0, we have B.x; 0/ D 0 D B.0; x/ for x 2 Œ0; c/. For
a given y 2 .0; c/, put

by.x/ D B.y; x/ � B.x; y/

for any x 2 Œ0; c/. Now, by.x/ is bounded and additive, more precisely,

by.x1 C x2/ D by.x1/C by.x2/

for x1; x2 2 Œ0; c/ with x1 C x2 < c, so it is the restriction to Œ0; c/ of a function
of x of the form by.x/ D a.y/x. Since by.y/ D 0 for all y 2 .0; c/, a.y/ � 0.
Hence, B is symmetric on Œ0; c/2. ut

Using the result of the last theorem, Skof and Terracini [336] have proved the
following theorem.

Theorem 8.9. Let E be a Banach space and let c; ı > 0 be given. If a function
f W Œ0; c/ ! E satisfies the inequality

kf .x C y/C f .x � y/� 2f .x/ � 2f .y/k � ı (8.9)

for all x � y � 0 with xCy < c, then there exists a quadratic functionQ W R ! E

such that

kf .x/ �Q.x/k � .79=2/ı (8.10)

for any x 2 Œ0; c/.
Proof. Putting x D y .D 0/ in (8.9) yields

kf .2x/C f .0/ � 4f .x/k � ı and kf .0/k � ı=2;



186 8 Quadratic Functional Equations

and hence

kf .2x/ � 4f .x/k � .3=2/ı .a/

for x 2 Œ0; c=2/. Define

g.x/ D
�
f .x/ .for x 2 Œ0; c//;
f .�x/ .for x 2 .�c; 0//

and put �.x; y/ D kg.x C y/C g.x � y/� 2g.x/� 2g.y/k. It follows from (8.9)
that

�.x; y/ � ı for x � y � 0 with x C y < c. .b/

For y � x � 0 with y C x < c we have

�.x; y/ D �.y; x/ D kf .x C y/C f .�x C y/� 2f .x/� 2f .y/k:

Hence, from (8.9) again, we get

�.x; y/ � ı for y � x � 0 with y C x < c. .c/

If x < 0, y � 0, and y � x < c, then �.x; y/ D �.�x; y/, since g is even. For this
case it holds true that either �x � y � 0 with �x C y < c or y � �x > 0 with
y � x < c. Hence, from .b/ or .c/ we obtain

�.x; y/ � ı for x < 0, y � 0; and y � x < c. .d/

Finally, assume that y < 0, jx C yj < c; and jx � yj < c. It then holds true that
either x � �y > 0 with x � y < c or �y � x � 0 with x � y < c or x < 0,
�y > 0; and �y � x < c. Therefore, it follows from .b/, .c/, or .d/ that

�.x; y/ � ı for y < 0, jx C yj < c; and jx � yj < c .e/

since �.x;�y/ D �.x; y/. According to .b/, .c/, .d/; and .e/, we conclude that

kg.x C y/C g.x � y/ � 2g.x/� 2g.y/k � ı .f /

for all .x; y/ 2 D.c/, where we set

D.c/ D ˚
.x; y/ 2 R2

ˇ
ˇ jx C yj < c; jx � yj < c�:

Let us define the auxiliary function h W D.c/ ! E by

h.x; y/ D .1=4/
�
g.x C y/ � g.x � y/

�
:
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Clearly, h.x; y/ D h.y; x/ for all .x; y/ 2 D.c/. When y 2 Œ0; c=2/, h satisfies the
inequality

kh.x1 C x2; y/� h.x1; y/� h.x2; y/k � ı

for any x1; x2 2 Œ0; c=2/ with x1 C x2 < c=2 (see below), and by the interchange
of x and y, we also have, when x 2 Œ0; c=2/,

kh.x; y C z/ � h.x; y/ � h.x; z/k � ı

for all y; z 2 Œ0; c=2/ with y C z < c=2. From the definition of h it follows that

4
�
h.x1 C x2; y/ � h.x1; y/ � h.x2; y/

�

D �
g.x1 C x2 C y/C g.x1 � x2 � y/� 2g.x1/� 2g.x2 C y/

�

� �
g.x1 � y � x2/C g.x1 � y C x2/ � 2g.x1 � y/� 2g.x2/

�

� �
g.x1 C y/C g.x1 � y/� 2g.x1/� 2g.y/�

C �
g.x2 C y/C g.x2 � y/ � 2g.x2/� 2g.y/

�

for any .x1; x2 C y/, .x1 � y; x2/, .x1; y/, .x2; y/ 2 D.c/. Hence, by .f /,

kh.x1 C x2; y/ � h.x1; y/ � h.x2; y/k � ı:

Thus, h satisfies the hypothesis of Theorem 8.8 with c=2 in place of c. Hence, there
exists a symmetric and biadditive function B W Œ0; c=2/2 ! E such that

kh.x; y/ � B.x; y/k � 9ı .g/

for .x; y/ 2 Œ0; c=2/2. When x 2 Œ0; c=2/, we have

kf .x/ � h.x; x/k D .1=4/k4f .x/ � f .2x/C f .0/k
� .1=4/k4f .x/ � f .2x/ � f .0/k C .1=2/kf .0/k;

and it follows from (8.9) that

kf .x/ � h.x; x/k � ı=2 .h/

for x 2 Œ0; c=2/.
The functionB.x; x/ is quadratic for x � y � 0with xCy < c=2. According to

a theorem by F. Skof [331], it may be extended to a quadratic functionQ W R ! E

such that Q.x/ D B.x; x/ for all x 2 Œ0; c=2/. Thus, from .g/ and .h/, we get

kf .x/ �Q.x/k D kf .x/ � B.x; x/k
� kf .x/ � h.x; x/k C kh.x; x/ � B.x; x/k
� .19=2/ı
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for x 2 Œ0; c=2/. Now, let x 2 Œc=2; c/. Taking account of .a/ and the last inequality
yields

kf .x/ �Q.x/k � kf .x/ � 4f .x=2/k C k4f .x=2/� 4Q.x=2/k � .79=2/ı;

which ends the proof. ut
With the help of Theorem 8.9, Skof and Terracini [336] proved the following

theorem.

Theorem 8.10 (Skof and Terracini). Let E be a Banach space and let c; ı > 0 be
given. If a function f W .�c; c/ ! E satisfies the inequality (8.9) for all x; y 2 R
with jxCyj < c and jx�yj < c, then there exists a quadratic functionQ W R ! E

such that

kf .x/ �Q.x/k � .81=2/ı

for any x 2 .�c; c/.
Proof. Obviously we have

2kf .y/ � f .�y/k � kf .x C y/C f .x � y/� 2f .x/� 2f .y/k
C k � f .x � y/ � f .x C y/C 2f .x/C 2f .�y/k

and hence, it follows from the hypothesis that

kf .y/ � f .�y/k � ı .a/

for any y 2 .�c; c/ because for each y 2 .�c; c/ there exists an x 2 .�c; c/ such
that jx C yj < c and jx � yj < c. Let us denote by f0 the restriction of f to Œ0; c/.
According to Theorem 8.9, there exists a quadratic functionQ W R ! E such that

kf0.x/ �Q.x/k � .79=2/ı .b/

for x 2 Œ0; c/. For x 2 .�c; 0/, the inequalities .a/ and .b/ imply

kf .x/ �Q.x/k � kf .x/ � f .�x/k C kf .�x/ �Q.�x/k
� ı C kf0.�x/ �Q.�x/k
� .81=2/ı;

which ends the proof. ut
The last theorem was generalized by extending the domains of the relevant func-

tions f to bounded subsets of Rn. Indeed, S.-M. Jung and B. Kim proved the
following result in the paper [187]:
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Let E be a Banach space and let c; ı > 0 be given constants. If a function
f W Œ�c; c�n ! E satisfies the inequality (8.9) for all x; y 2 Œ�c; c�n with x C
y; x � y 2 Œ�c; c�n, then there exists a quadratic functionQ W Rn ! E such that

kf .x/ �Q.x/k < .2912n2 C 1872nC 334/ı

for any x 2 Œ�c; c�n.

In 1998, Jung investigated the Hyers–Ulam stability of the quadratic functional
equation (8.1) on the unbounded restricted domains (see [167, Theorem 2]).

Theorem 8.11 (Jung). Let E1 and E2 be a real normed space and a real Banach
space, respectively, and let d > 0 and ı � 0 be given. Assume that a function
f W E1 ! E2 satisfies the inequality (8.9) for all x; y 2 E1 with kxk C kyk � d .
Then there exists a unique quadratic function Q W E1 ! E2 such that

kf .x/ �Q.x/k � .7=2/ı (8.11)

for all x 2 E1.

Proof. Assume kxk C kyk < d . If x D y D 0, then we choose a z 2 E1 with
kzk D d . Otherwise, let z D �

1C d=kxk�x for kxk � kyk or z D �
1C d=kyk�y

for kxk < kyk. Clearly, we see

kx � zk C ky C zk � d; kx C zk C ky C zk � d;

ky C zk C kzk � d; kxk C ky C 2zk � d; kxk C kzk � d:
(a)

From (8.9), .a/, and the relation

f .x C y/C f .x � y/ � 2f .x/ � 2f .y/
D f .x C y/C f .x � y � 2z/ � 2f .x � z/ � 2f .y C z/

Cf .x C y C 2z/C f .x � y/ � 2f .x C z/ � 2f .y C z/

� 2f .y C 2z/ � 2f .y/C 4f .y C z/C 4f .z/

� f .x C y C 2z/� f .x � y � 2z/C 2f .x/C 2f .y C 2z/

C 2f .x C z/C 2f .x � z/ � 4f .x/ � 4f .z/;

we get
kf .x C y/C f .x � y/� 2f .x/ � 2f .y/k � 7ı: .b/

Obviously, the inequality .b/ holds true for all x; y 2 E1. According to .b/ and
Theorem 8.1, there exists a unique quadratic functionQ W E1 ! E2 which satisfies
the inequality (8.11) for all x 2 E1. ut

For more detailed information on the stability of the quadratic equation (8.1), we
can refer to a paper [298] of Th. M. Rassias.
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8.3 Fixed Point Method

In this section, we fix a real number ˇ with 0 < ˇ � 1. SupposeE is a vector space
over K. A function k � kˇ W E ! Œ0;1/ is called a ˇ-norm if and only if it satisfies

(N1) kxkˇ D 0 if and only if x D 0;
(N2) k	xkˇ D j	jˇkxkˇ for all 	 2 K and all x 2 E;
(N3) kx C ykˇ � kxkˇ C kykˇ for all x; y 2 E .

By using the idea of L. Cădariu and V. Radu [55, 57], S.-M. Jung, T.-S. Kim,
and K.-S. Lee [190] proved the Hyers–Ulam–Rassias stability of the quadratic func-
tional equation in a more general setting. (Before the paper [190], Cădariu and Radu
[56] applied the fixed point method to the proof of the stability of quadratic func-
tional equations.) In the following theorem, we will introduce some results obtained
by Jung, Kim, and Lee.

Theorem 8.12. Let E1 and E2 be vector spaces over K. In particular, let E2 be a
complete ˇ-normed space, where 0 < ˇ � 1. Suppose ' W E21 ! Œ0;1/ is a given
function and there exists a constant L, 0 < L < 1, such that

'.2x; 2x/ � 4ˇL'.x; x/ (8.12)

for all x 2 E1. Furthermore, let f W E1 ! E2 be a function with f .0/ D 0 which
satisfies

kf .x C y/C f .x � y/� 2f .x/� 2f .y/kˇ � '.x; y/ (8.13)

for all x; y 2 E1. If ' satisfies

lim
n!1 4�nˇ'.2nx; 2ny/ D 0 (8.14)

for any x; y 2 E1, then there exists a unique quadratic functionQ W E1 ! E2 such
that

kf .x/ �Q.x/kˇ � 1

4ˇ
1

1 � L
'.x; x/ (8.15)

for all x 2 E1.

Proof. If we define

X D ˚
g W E1 ! E2 j g.0/ D 0

�

and introduce a generalized metric on X as follows:

d.g; h/ D inf
˚
C 2 Œ0;1� j kg.x/ � h.x/kˇ � C'.x; x/ for all x 2 E1

�
;

then .X; d/ is complete (ref. [181, Theorem 2.1]).
We define an operatorƒ W X ! X by

.ƒg/.x/ D .1=4/g.2x/
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for all x 2 E1. First, we assert that ƒ is strictly contractive on X . Given g; h 2 X ,
let C 2 Œ0;1� be an arbitrary constant with d.g; h/ � C , i.e.,

kg.x/ � h.x/kˇ � C'.x; x/

for all x 2 E1. If we replace x in the last inequality with 2x and make use of (8.12),
then we have

k.ƒg/.x/ � .ƒh/.x/kˇ � LC'.x; x/

for every x 2 E1, i.e., d.ƒg;ƒh/ � LC . Hence, we conclude that d.ƒg;ƒh/ �
Ld.g; h/ for any g; h 2 X .

Next, we assert that d.ƒf; f / < 1. If we substitute x for y in (8.13) and we
divide both sides by 4ˇ , then (8.12) establishes

k.ƒf /.x/ � f .x/kˇ � 4�ˇ'.x; x/

for any x 2 E1, i.e.,

d.ƒf; f / � 4�ˇ < 1: .a/

Now, it follows from Theorem 2.43 .i/ that there exists a functionQ W E1 ! E2
with Q.0/ D 0, which is a fixed point of ƒ, such that ƒnf ! Q, i.e.,

Q.x/ D lim
n!1 4�nf .2nx/ .b/

for all x 2 E1.
Since the integer n0 of Theorem 2.43 is 0 and f 2 X� (see Theorem 2.43 for the

definition of X�), by Theorem 2.43 .iii/ and .a/, we obtain

d.f;Q/ � 1

1 � L
d.ƒf; f / � 1

4ˇ
1

1 � L
; .c/

i.e., the inequality (8.15) is true for all x 2 E1.
Now, substitute 2nx and 2ny for x and y in (8.13), respectively. If we divide both

sides of the resulting inequality by 4nˇ and let n go to infinity, it follows from (8.14)
and .b/ that Q is a quadratic function.

Assume that the inequality (8.15) is also satisfied with another quadratic function
Q0 W E1 ! E2 besidesQ. (AsQ0 is a quadratic function,Q0 satisfies thatQ0.x/ D
.1=4/Q0.2x/ D .ƒQ0/.x/ for all x 2 E1. That is, Q0 is a fixed point ofƒ.) In view
of (8.15) and the definition of d , we know that

d.f;Q0/ � 1

4ˇ
1

1 � L
< 1;

i.e., Q0 2 X� D ˚
y 2 X j d.ƒf; y/ < 1�

. (In view of .a/, the integer n0 of
Theorem 2.43 is 0.) Thus, Theorem 2.43 .ii/ implies that Q D Q0. This proves the
uniqueness of Q. ut
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We will now generalize the above theorem by removing the hypothesis f .0/ D 0

and get the following theorem.

Theorem 8.13. Let E1 andE2 be a vector space over K and a complete ˇ-normed
space over K, respectively, where 0 < ˇ � 1. Suppose a function ' W E21 ! Œ0;1/

satisfies the condition (8.14) for all x; y 2 E1 and there exists a constantL, 4�ˇ �
L < 1, for which the inequality (8.12) holds true for any x 2 E1. If a function
f W E1 ! E2 satisfies the inequality (8.13) for all x; y 2 E1, then there exists a
unique quadratic functionQ W E1 ! E2 such that

kf .x/ � f .0/ �Q.x/kˇ � 1

4ˇ
1

1 �L
�
inf
˚
'.z; 0/ j z 2 E1

�C '.x; x/
�

for all x 2 E1.

Proof. Putting y D 0 in (8.13) yields

k2f .0/kˇ � '.x; 0/

for any x 2 E1. We define a function g W E1 ! E2 by g.x/ D f .x/ � f .0/. If we
set

 .x; y/ D '0 C '.x; y/

for each x; y 2 E1, where '0 D inf
˚
'.x; 0/ j x 2 E1

�
, it then follows from (8.13)

that
kg.x C y/C g.x � y/ � 2g.x/� 2g.y/kˇ �  .x; y/

for all x; y 2 E1.
Considering (8.12) and L � 4�ˇ , we see that

 .2x; 2x/ D '0 C '.2x; 2x/ � '0 C 4ˇL'.x; x/ � 4ˇL .x; x/

for any x 2 E1. Moreover, we make use of (8.14) to verify that

lim
n!1 4�nˇ .2nx; 2ny/ D lim

n!1 4�nˇ �'0 C '.2nx; 2ny/
� D 0

for every x; y 2 E1.
According to Theorem 8.12, there exists a unique quadratic function Q W E1 !

E2 satisfying the inequality (8.15) with g instead of f . ut
By a similar way as in the proof of Theorem 8.12, we also apply Theorem 2.43

and prove the following theorem.

Theorem 8.14. Let E1 andE2 be a vector space over K and a complete ˇ-normed
space over K, respectively. Assume that ' W E21 ! Œ0;1/ is a given function and
there exists a constant L, 0 < L < 1, such that

'.x; x/ � 4�ˇL'.2x; 2x/ (8.16)
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for all x 2 E1. Furthermore, assume that f W E1 ! E2 is a given function with
f .0/ D 0 and satisfies the inequality (8.13) for all x; y 2 E1. If ' satisfies

lim
n!1 4nˇ'.2�nx; 2�ny/ D 0

for every x; y 2 E1, then there exists a unique quadratic function Q W E1 ! E2
such that

kf .x/ �Q.x/kˇ � 1

4ˇ
L

1 � L
'.x; x/ (8.17)

for any x 2 E1.

Proof. We use the definitions for X and d , the generalized metric on X , as in the
proof of Theorem 8.12. Then, .X; d/ is complete. We define an operator ƒ W X !
X by

.ƒg/.x/ D 4g.x=2/

for all x 2 E1. We apply the same argument as in the proof of Theorem 8.12 and
prove that ƒ is a strictly contractive operator. Moreover, we prove that

d.ƒf; f / � 4�ˇL .a/

instead of .a/ in the proof of Theorem 8.12.
According to Theorem 2.43 .i/, there exists a function Q W E1 ! E2 with

Q.0/ D 0, which is a fixed point of ƒ, such that

Q.x/ D lim
n!1 4nf .2�nx/

for each x 2 E1.
Since the integer n0 of Theorem 2.43 is 0 and f 2 X� (see Theorem 2.43 for the

definition of X�), using Theorem 2.43 .iii/ and .a/ yields

d.f;Q/ � 1

1 � L
d.ƒf; f / � 1

4ˇ
L

1 � L
;

which implies the validity of the inequality (8.17).
In the last part of the proof of Theorem 8.12, if we replace 2nx, 2ny, and 4nˇ

with 2�nx, 2�ny, and 4�nˇ , respectively, then we can prove that Q is a unique
quadratic function satisfying inequality (8.17) for all x 2 E1. ut

Theorem 8.14 cannot be generalized to the case without the condition f .0/ D 0.
For example, if ' is continuous at .0; 0/, then the condition (8.16) implies that

'.x; x/ � �
4ˇ=L

�n
'.2�nx; 2�nx/

for any n 2 N . By letting n ! 1, we conclude that '.0; 0/ D 0. If we put
x D y D 0 in (8.13), then we get f .0/ D 0.
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Let E1 and E2 be real vector spaces. If an additive function � W E1 ! E1
satisfies �

�
�.x/

� D x for all x 2 E1, then � is called an involution of E1. For a
given involution � W E1 ! E1, the functional equation

f .x C y/C f
�
x C �.y/

� D 2f .x/C 2f .y/

is called the quadratic functional equation with involution.
In 2008, S.-M. Jung and Z.-H. Lee proved the Hyers–Ulam–Rassias stability of

the quadratic functional equation with involution by applying the fixed point method
while B. Belaid, E. Elhoucien, and Th. M. Rassias proved it by using the direct
method (see [18, 192]).

8.4 Quadratic Functional Equation of Other Type

A quadratic functional equation different from the “original” quadratic functional
equation (8.1) is introduced:

f .xC yC z/C f .x/C f .y/C f .z/ D f .xC y/C f .yC z/C f .z C x/ (8.18)

This equation is sometimes called the functional equation of Deeba. In 1995, Pl.
Kannappan [211] investigated the general solution of the functional equation of
Deeba:

The general solution f W R ! R of the functional equation (8.18) is given by
f .x/ D B.x; x/ C A.x/, where B W R2 ! R is a symmetric biadditive function
and A W R ! R is an additive function.

Throughout this section, assume that E1 and E2 are a real normed space and a
real Banach space, respectively.

We now prove the Hyers–Ulam stability of the functional equation (8.18) under
suitable condition by using a direct method. We first introduce a lemma presented
in [167]:

Lemma 8.15. If a function f W E1 ! E2 satisfies the inequality

kf .xCyCz/Cf .x/Cf .y/Cf .z/�f .xCy/�f .yCz/�f .zCx/k � ı (8.19)

for some ı � 0 and for all x; y; z 2 E1, then

�
�
�
�f .x/ � 2n C 1

22nC1 f .2
nx/C 2n � 1

22nC1 f .�2nx/
�
�
�
� � 3ı

nX

kD1
2�k (8.20)

for all x 2 E1 and n 2 N .
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Proof. If we replace x, y, and z in (8.19) with 0, we get kf .0/k � ı. Putting
x D y D �z in (8.19) yields

k3f .x/C f .�x/ � f .2x/k � 3ı: .a/

By substituting �x for x in .a/, we obtain

k3f .�x/C f .x/ � f .�2x/k � 3ı: .b/

We use induction on n to prove our lemma. By .a/ and .b/, we have

kf .x/ � .3=8/f .2x/C .1=8/f .�2x/k
� .3=8/k3f .x/C f .�x/ � f .2x/k

C .1=8/k � 3f .�x/� f .x/C f .�2x/k
� .3=2/ı;

which proves the validity of the inequality (8.20) for n D 1. Assume now that the
inequality (8.20) holds true for some n 2 N . By using .a/, .b/, and the relation

f .x/ � 2nC1 C 1

22nC3 f
�
2nC1x

�C 2nC1 � 1
22nC3 f

� � 2nC1x
�

D f .x/ � 2n C 1

22nC1 f .2
nx/C 2n � 1

22nC1 f .�2nx/

C 2nC1 C 1

22nC3
�
3f .2nx/C f .�2nx/ � f

�
2nC1x

��

� 2nC1 � 1

22nC3
�
3f .�2nx/C f .2nx/ � f � � 2nC1x

��
;

we can easily verify the inequality (8.20) for nC 1 which ends the proof. ut
In the following theorem, S.-M. Jung [167] proved the Hyers–Ulam stability of

the functional equation of Deeba under the approximately even condition.

Theorem 8.16 (Jung). Assume that a function f W E1 ! E2 satisfies the system
of inequalities

kf .x C y C z/C f .x/C f .y/C f .z/

� f .x C y/ � f .y C z/ � f .z C x/k � ı; (8.21)

kf .x/ � f .�x/k � �

for some ı; � � 0 and for all x; y; z 2 E1. Then there exists a unique quadratic
functionQ W E1 ! E2 which satisfies (8.18) and the inequality

kf .x/ �Q.x/k � 3ı (8.22)

for all x 2 E1.
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Proof. It follows from (8.20) and the second condition in (8.21) that

kf .x/ � 2�2nf .2nx/k � 3ı

nX

kD1
2�k C 2n � 1

22nC1 �: .a/

By .a/ we have

k2�2nf .2nx/ � 2�2mf .2mx/k
D 2�2m��2�2.n�m/f .2n�m � 2mx/ � f .2mx/��

� 2�2m
 

3ı

n�mX

kD1
2�k C 2n�m � 1

22.n�m/C1 �
!

(b)

for n � m. Since the right-hand side of the inequality .b/ tends to 0 as m tends to
1, the sequence f2�2nf .2nx/g is a Cauchy sequence.

Therefore, we may apply a direct method to the definition of Q. Define

Q.x/ D lim
n!1 2�2nf .2nx/

for all x 2 E1. From the first condition in (8.21), it follows that

kQ.x C y C z/CQ.x/CQ.y/CQ.z/

� Q.x C y/�Q.y C z/�Q.z C x/k � 2�2nı

for all x; y; z 2 E1 and for all n 2 N . Therefore, by letting n ! 1 in the last
inequality, it is clear that Q is a solution of (8.18). Analogously, by the second
condition in (8.21), we can show that Q is even. By putting z D �y in (8.18) and
by taking account of Q.0/ D 0, we see that Q is quadratic as an even solution of
(8.18). According to .a/, the inequality (8.22) holds true.

Now, let Q0 W E1 ! E2 be another quadratic function which satisfies (8.18) and
(8.22). Obviously, we have

Q.2nx/ D 4nQ.x/ and Q0.2nx/ D 4nQ0.x/

for all x 2 E1 and n 2 N . Hence, it follows from (8.22) that

kQ.x/�Q0.x/k D 4�nkQ.2nx/ �Q0.2nx/k
� 4�n�kQ.2nx/ � f .2nx/k C kf .2nx/ �Q0.2nx/k�

� 6ı=4n

for all x 2 E1 and n 2 N . By letting n ! 1 in the preceding inequality, we
immediately see the uniqueness of Q. ut
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From the direct combination of the inequalities in (8.21), it follows that the
function f W E1 ! E2 in Theorem 8.16 satisfies the inequality

kf .x C y/C f .x � y/ � 2f .x/ � 2f .y/k � ı C � C kf .0/k � 2ı C �:

According to Theorem 8.1, there is a unique quadratic functionQ W E1 ! E2 such
that

kf .x/ �Q.x/k � ı C .1=2/�:

We see that the last inequality contains a � term which appeared as the upper bound
for the second inequality in (8.21). The advantage of the inequality (8.22) compared
to the last inequality is that the right-hand side of (8.22) contains no � term.

Similarly as in the proof of Theorem 8.16, the Hyers–Ulam stability for equation
(8.18) under the approximately odd condition is proved (see [167, Theorem 7]).

Theorem 8.17 (Jung). Assume that a function f W E1 ! E2 satisfies the system of
inequalities

kf .x C y C z/C f .x/C f .y/C f .z/

�f .x C y/ � f .y C z/ � f .z C x/k � ı; (8.23)

kf .x/C f .�x/k � �

for some ı; � � 0 and for all x; y; z 2 E1. Then there exists a unique additive
function A W E1 ! E2 satisfying the inequality

kf .x/ �A.x/k � 3ı (8.24)

for all x 2 E1.

Proof. From (8.20) and the second condition in (8.23), we get

kf .x/ � 2�nf .2nx/k � 3ı

nX

kD1
2�k C 2n � 1

22nC1 �: .a/

The sequence f2�nf .2nx/g is a Cauchy sequence because, for n � m,

k2�nf .2nx/ � 2�mf .2mx/k
D 2�mk2�.n�m/f .2n�m � 2mx/ � f .2mx/k

� 2�m
 

3ı

n�mX

kD1
2�k C 2n�m � 1

22.n�m/C1 �
!

! 0 as m ! 1:

Now, define
A.x/ D lim

n!1 2�nf .2nx/
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for all x 2 E1. Similarly as in the proof of Theorem 8.16, due to (8.23), we see that
the function A satisfies (8.18) and is odd. Putting z D �y in (8.18), considering the
oddness of A and letting u D x C y, v D x � y yield

2A
�
.u C v/=2

� D A.u/C A.v/:

According to [278], since A.0/ D 0, the function A is additive. The validity of the
inequality (8.24) follows directly from .a/ and the definition of A.

Now, let A0 W E1 ! E2 be another additive function which satisfies (8.24). It
then follows from (8.24) that

kA.x/ �A0.x/k D 2�nkA.2nx/ � A0.2nx/k
� 2�n�kA.2nx/ � f .2nx/k C kf .2nx/ �A0.2nx/k�

� 6ı=2n

for all x 2 E1 and n 2 N . This implies the uniqueness of A. ut
The approximately even condition in (8.21) guarantees the “quadratic” property

of Q, whereas the approximately odd condition in (8.23) guarantees the “additive”
behavior of A.

G.-H. Kim [215] proved the Hyers–Ulam–Rassias stability of the quadratic
functional equation (8.18), and I.-S. Chang and H.-M. Kim [61] generalized the
preceding theorems of Jung.

8.5 Quadratic Functional Equation of Pexider Type

In this section, we will prove the Hyers–Ulam–Rassias stability of the quadratic
functional equation of Pexider type:

f1.x C y/C f2.x � y/ D f3.x/C f4.y/ (8.25)

This equation of Pexider type is useful to characterize the quasi-inner product
spaces. B. R. Ebanks, Pl. Kannappan, and P. K. Sahoo [96] proved the following
theorem concerning the general solution of equation (8.25) (see also [172]).

The general solution f1; f2; f3; f4 W R ! R of the functional equation (8.25) is
given by

f1.x/ D B.x; x/ C A1.x/C A2.x/C .a � b/;

f2.x/ D B.x; x/ C A1.x/ �A2.x/ � .a C b/;

f3.x/ D 2B.x; x/C 2A1.x/ � .2b C c/;

f4.x/ D 2B.x; x/C 2A2.x/C c;

where B W R2 ! R is a symmetric biadditive function, A1; A2 W R ! R are
additive functions, and a; b; c are real constants.
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Throughout this section, assume that E1 and E2 are a real normed space and a
real Banach space, respectively. Let ' W E21 ! Œ0;1/ be a given function with the
properties:

(i) '.y; x/ D '.x; y/;
(ii) '.x;�y/ D '.x; y/;

(iii) it holds true that

1X

iD0
22i'.2�ix; 2�iy/ < 1 for all x; y 2 E1:

We now define

'e.x; y/ D 2'.x; y/C 4'.x; 0/C 3'.x C y; 0/C 3'.x � y; 0/

C 6'
�
.x C y/=2; .x C y/=2

�C 2'
�
.x � y/=2; .x � y/=2

�

C 20'.0; 0/;

'o.x; y/ D 2'.x; y/C 2'.x; x/C 2'.y; y/C 2'.2x; 0/C 2'.2y; 0/

C 2'.x C y; 0/C 2'.x � y; 0/C 14'.0; 0/;

ˆ.x; y/ D
1X

iD0
22.iC1/'e

�
2�i�1x; 2�i�1y

�
;

ˆ0.x; y/ D
1X

iD0
2iC1'o

�
2�i�2.x C y/; 2�i�2.x � y/�;

and

ˆ00.x; y/ D
1X

iD0
2iC1'o

�
2�i�2.2x C y/; 2�i�2y

�

for all x; y 2 E1. These definitions will be used in the following theorem. We see
that 'o satisfies the conditions .i/, .ii/, and .iii/ instead of '.

S.-M. Jung proved the Hyers–Ulam–Rassias stability of the quadratic functional
equation of Pexider type which includes the following theorem as a special case (see
[173, Theorem 5]).

Theorem 8.18 (Jung). If given functions f1; f2; f3; f4 W E1 ! E2 satisfy the
inequality

kf1.x C y/C f2.x � y/� f3.x/ � f4.y/k � '.x; y/ (8.26)

for all x; y 2 E1, then there exist a quadratic function Q W E1 ! E2 and additive
functions A1; A2 W E1 ! E2 such that

kf1.x/ �Q.x/� A1.x/ � A2.x/ � f1.0/k
� .1=8/ˆ.x; x/C .1=4/ˆ0.x; x/C .1=4/ˆ00.x; x/

C 3'.x=2; x=2/C .5=2/'.x; 0/C .11=2/'.0; 0/;
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kf2.x/ �Q.x/� A1.x/C A2.x/ � f2.0/k
� .1=8/ˆ.x; x/C .1=4/ˆ0.x; x/C .1=4/ˆ00.x; x/

C '.x=2; x=2/C .5=2/'.x; 0/C .7=2/'.0; 0/;

kf3.x/ � 2Q.x/ � 2A1.x/ � f3.0/k
� .1=4/ˆ.x; x/C .1=2/ˆ0.x; x/C 2'.x; 0/C 2'.0; 0/;

kf4.x/ � 2Q.x/ � 2A2.x/ � f4.0/k � .1=4/ˆ.x; x/C .1=2/ˆ00.x; x/

for all x 2 E1.

Proof. Let us define Fi .x/ D fi .x/�fi .0/, and by F ei and F oi denote the even part
and the odd part ofFi for i 2 f1; 2; 3; 4g. Then, we getFi .0/ D F ei .0/ D F oi .0/D 0

for i 2 f1; 2; 3; 4g. Putting x D y D 0 in (8.26) and subtracting the resulting
inequality from the original one yield

kF1.x C y/C F2.x � y/ � F3.x/ � F4.y/k � '.x; y/C '.0; 0/ .a/

for all x; y 2 E1. If we replace x and y in .a/ with �x and �y, respectively, and
we add (subtract) the resulting inequality to (from) the original one, then we obtain

kF e1 .x C y/C F e2 .x � y/ � F e3 .x/ � F e4 .y/k � '.x; y/C '.0; 0/ .b/

and

kF o1 .x C y/C F o2 .x � y/ � F o3 .x/ � F o4 .y/k � '.x; y/C '.0; 0/ .c/

for all x; y 2 E1.
If we put y D 0, x D 0 (and replace y with x), y D x, or if we put y D �x in

.b/, then we get

kF e1 .x/C F e2 .x/ � F e3 .x/k � '.x; 0/C '.0; 0/; .d/

kF e1 .x/C F e2 .x/ � F e4 .x/k � '.x; 0/C '.0; 0/; .e/

kF e1 .2x/ � F e3 .x/ � F e4 .x/k � '.x; x/C '.0; 0/; .f /

or
kF e2 .2x/� F e3 .x/ � F e4 .x/k � '.x; x/C '.0; 0/ .g/

for all x 2 E1.
In view of .d/ and .e/, we see that

kF e3 .x/ � F e4 .x/k
� kF e1 .x/C F e2 .x/ � F e4 .x/k C kF e3 .x/ � F e1 .x/ � F e2 .x/k
� 2'.x; 0/C 2'.0; 0/; (h)
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and it follows from .f / and .g/ that

kF e1 .x/ � F e2 .x/k � 2'.x=2; x=2/C 2'.0; 0/ .i/

for any x 2 E1. By using .b/, .h/, and .i/, we have

kF e2 .x C y/C F e2 .x � y/ � F e4 .x/ � F e4 .y/k
� kF e1 .x C y/C F e2 .x � y/ � F e3 .x/ � F e4 .y/k

C kF e2 .x C y/ � F e1 .x C y/k C kF e3 .x/ � F e4 .x/k
� '.x; y/C 2'.x; 0/C 2'

�
.x C y/=2; .x C y/=2

�C 5'.0; 0/: ( j)

Putting y D 0 in .j / yields

k2F e2 .x/ � F e4 .x/k � 3'.x; 0/C 2'.x=2; x=2/C 5'.0; 0/: .k/

Hence, .j / and .k/ imply

kF e4 .x C y/C F e4 .x � y/ � 2F e4 .x/ � 2F e4 .y/k
� 2 kF e2 .x C y/C F e2 .x � y/ � F e4 .x/ � F e4 .y/k

C kF e4 .x C y/� 2F e2 .x C y/k C kF e4 .x � y/ � 2F e2 .x � y/k
� 'e.x; y/

for all x; y 2 E1.
In view of .iii/, we can apply [173, Theorem 3] to this case. Hence, there exists

a unique quadratic functionQ W E1 ! E2 such that

kF e4 .x/ � 2Q.x/k � .1=4/ˆ.x; x/ .l/

for all x 2 E1. (In order to obtain the last inequality, we need to make a routine
computation.)

On account of .h/, .i/, .k/, and .l/, we get

kF e1 .x/ �Q.x/k
� kF e1 .x/ � F e2 .x/k C kF e2 .x/ � .1=2/F e4 .x/k

C k.1=2/F e4 .x/ �Q.x/k
� .1=8/ˆ.x; x/C 3'.x=2; x=2/C .3=2/'.x; 0/C .9=2/'.0; 0/; (m)

kF e2 .x/ �Q.x/k
� kF e2 .x/ � .1=2/F e4 .x/k C k.1=2/F e4 .x/ �Q.x/k
� .1=8/ˆ.x; x/C '.x=2; x=2/C .3=2/'.x; 0/C .5=2/'.0; 0/; (n)
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and

kF e3 .x/ � 2Q.x/k
� kF e3 .x/ � F e4 .x/k C kF e4 .x/ � 2Q.x/k
� .1=4/ˆ.x; x/C 2'.x; 0/C 2'.0; 0/ (o)

for any x 2 E1.
If we put y D 0, x D 0 (and replace y with x), y D x, or if we put y D �x in

.c/ separately, then we obtain

kF o1 .x/C F o2 .x/ � F o3 .x/k � '.x; 0/C '.0; 0/; .p/

kF o1 .x/ � F o2 .x/ � F o4 .x/k � '.x; 0/C '.0; 0/; .q/

kF o1 .2x/� F o3 .x/ � F o4 .x/k � '.x; x/C '.0; 0/; .r/

or
kF o2 .2x/� F o3 .x/C F o4 .x/k � '.x; x/C '.0; 0/ .s/

for all x 2 E1.
Due to .p/ and .q/, we have

k2F o1 .x/ � F o3 .x/ � F o4 .x/k
� kF o1 .x/C F o2 .x/ � F o3 .x/k C kF o1 .x/ � F o2 .x/ � F o4 .x/k
� 2'.x; 0/C 2'.0; 0/ (t)

and

k2F o2 .x/ � F o3 .x/C F o4 .x/k
� kF o1 .x/C F o2 .x/ � F o3 .x/k C kF o2 .x/C F o4 .x/ � F o1 .x/k
� 2'.x; 0/C 2'.0; 0/ (u)

for each x 2 E1.
Combining .r/ with .t/ yields

kF o3 .2x/C F o4 .2x/� 2F o3 .x/ � 2F o4 .x/k
� kF o3 .2x/C F o4 .2x/� 2F o1 .2x/k

C k2F o1 .2x/ � 2F o3 .x/ � 2F o4 .x/k
� 2'.x; x/C 2'.2x; 0/C 4'.0; 0/: (v)

Analogously, by .s/ and .u/, we get

kF o3 .2x/ � F o4 .2x/� 2F o3 .x/C 2F o4 .x/k
� kF o3 .2x/ � F o4 .2x/ � 2F o2 .2x/k

C k2F o2 .2x/ � 2F o3 .x/C 2F o4 .x/k
� 2'.x; x/C 2'.2x; 0/C 4'.0; 0/ (w)
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for any x 2 E1. It now follows from .v/ and .w/ that

kF o3 .2x/� 2F o3 .x/k
� k.1=2/F o3 .2x/C .1=2/F o4 .2x/� F o3 .x/ � F o4 .x/k

C k.1=2/F o3 .2x/ � .1=2/F o4 .2x/ � F o3 .x/C F o4 .x/k
� 2'.x; x/C 2'.2x; 0/C 4'.0; 0/ (x)

and

kF o4 .2x/ � 2F o4 .x/k � 2'.x; x/C 2'.2x; 0/C 4'.0; 0/ .y/

for all x 2 E1.
In view of .c/, .t/, .u/, .x/, and .y/, we have

kF o3 .x C y/C F o4 .x C y/C F o3 .x � y/

� F o4 .x � y/� F o3 .2x/� F o4 .2y/k
� k2F o1 .x C y/C 2F o2 .x � y/ � 2F o3 .x/ � 2F o4 .y/k

C kF o3 .x C y/C F o4 .x C y/ � 2F o1 .x C y/k
C kF o3 .x � y/ � F o4 .x � y/ � 2F o2 .x � y/k
C k2F o3 .x/ � F o3 .2x/k C k2F o4 .y/ � F o4 .2y/k

� 'o.x; y/ (z)

for all x; y 2 E1. If we replace y in .z/with �y and then add (subtract) the resulting
inequality to (from) .z/, then we get

kF o3 .x C y/C F o3 .x � y/� F o3 .2x/k � 'o.x; y/ .˛/

and

kF o4 .x C y/ � F o4 .x � y/ � F o4 .2y/k � 'o.x; y/ .ˇ/

for any x; y 2 E1.
Letting u D x C y and v D x � y in .˛/ yields

kF o3 .u/C F o3 .v/� F o3 .u C v/k � 'o
�
.u C v/=2; .u � v/=2

�

for all u; v 2 E1. According to Corollary 2.19, there exists a unique additive function
A1 W E1 ! E2 such that

kF o3 .x/ � 2A1.x/k � .1=2/ˆ0.x; x/ .�/

for all x 2 E1.
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Putting u D x � y and v D 2y in .ˇ/ yields

kF o4 .u C v/� F o4 .u/� F o4 .v/k � 'o.u C v=2; v=2/

for all u; v 2 E1. According to Corollary 2.19 again, there exists a unique additive
function A2 W E1 ! E2 such that

kF o4 .x/ � 2A2.x/k � .1=2/ˆ00.x; x/ .ı/

for any x 2 E1.
From .t/, .u/, .�/, and .ı/, it follows that

kF o1 .x/ �A1.x/ � A2.x/k
� kF o1 .x/ � .1=2/F o3 .x/ � .1=2/F o4 .x/k

C k.1=2/F o3 .x/ � A1.x/k C k.1=2/F o4 .x/ �A2.x/k
� .1=4/ˆ0.x; x/C .1=4/ˆ00.x; x/C '.x; 0/C '.0; 0/ (�)

and

kF o2 .x/ �A1.x/C A2.x/k
� kF o2 .x/ � .1=2/F o3 .x/C .1=2/F o4 .x/k

C k.1=2/F o3 .x/ � A1.x/k C kA2.x/ � .1=2/F o4 .x/k
� .1=4/ˆ0.x; x/C .1=4/ˆ00.x; x/C '.x; 0/C '.0; 0/ (�)

for each x 2 E1.
Finally, the assertion of this theorem is true in view of the inequalities .l/, .m/,

.n/, .o/, .�/, .ı/, .�/, and .�/. ut
Later, K.-W. Jun and Y.-H. Lee [153] proved Theorem 8.18 again in a setting

kf1.x C y/C f2.x � y/ � 2f3.x/ � 2f4.y/k � '.x; y/

instead of the inequality (8.26).
In the next corollary, we introduce the Hyers–Ulam stability of the quadratic

functional equation of Pexider type. We refer the reader to [173, Corollary 6] or
[200, Theorem 3] for the proof.

Corollary 8.19. If functions f1; f2; f3; f4 W E1 ! E2 satisfy the inequality

kf1.x C y/C f2.x � y/ � f3.x/� f4.y/k � ı

for some ı � 0 and for all x; y 2 E1, then there exist a unique quadratic function
Q W E1 ! E2 and exactly two additive functions A1; A2 W E1 ! E2 such that
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kf1.x/ �Q.x/ �A1.x/ � A2.x/ � f1.0/k � .137=3/ı;

kf2.x/ �Q.x/ �A1.x/C A2.x/� f2.0/k � .125=3/ı;

kf3.x/ � 2Q.x/� 2A1.x/� f3.0/k � .136=3/ı;

kf4.x/ � 2Q.x/� 2A2.x/� f4.0/k � .124=3/ı

for all x 2 E1.

D. Yang [359] improved Corollary 8.19 by replacing the domain of the functions
fi with a 2-divisible abelian group and by obtaining sharper estimates.



Chapter 9
Exponential Functional Equations

The exponential function f .x/ D ex is a powerful tool in each field of natural
sciences and engineering since many natural phenomena well-known to us can be
described best of all by means of it. The famous exponential functional equation
f .x C y/ D f .x/f .y/ simplifies the elegant property of the exponential function,
for example, exCy D exey . In Section 9.1, the superstability of the exponential
functional equation will be proved. Section 9.2 deals with the stability of the ex-
ponential equation in the sense of R. Ger. Stability problems of the exponential
functional equation on a restricted domain and asymptotic behaviors of exponen-
tial functions are discussed in Section 9.3. Another exponential functional equation
f .xy/ D f .x/y will be introduced in Section 9.4.

9.1 Superstability

The function f .x/ D ax is said to be an exponential function, where a > 0 is a
fixed real number. The exponent law of exponential functions is well represented by
the exponential functional equation

f .x C y/ D f .x/f .y/:

Hence, we call every solution function of the exponential functional equation an
exponential function. We now introduce the general solution of the exponential func-
tional equation (see [90, Theorem 6.4]).

A function f W R ! C is an exponential function if and only if either

f .x/ D eA.x/Cia.x/ for all x 2 R or f .x/ D 0 for all x 2 R;

where A W R ! R is an additive function and a W R ! R satisfies

a.x C y/ � a.x/C a.y/ mod 2�

for all x; y 2 R.

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 9, c� Springer Science+Business Media, LLC 2011
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Indeed, a function f W R ! R continuous at a point is an exponential function
if and only if f .x/ D ax for all x 2 R or f .x/ D 0 for all x 2 R, where a > 0 is a
constant.

J. Baker, J. Lawrence, and F. Zorzitto [17] have proved the superstability of the
exponential functional equation:

If a real-valued function f defined on a real vector space satisfies the functional
inequality

jf .x C y/� f .x/f .y/j � ı

for some ı > 0 and for all x and y, then f is either bounded or exponential.

This theorem was the first result concerning the superstability phenomenon of
functional equations.

J. Baker [16] generalized this famous result as follows:

Theorem 9.1 (Baker). Let .G; �/ be a semigroup and let ı > 0 be given. If a func-
tion f W G ! C satisfies the inequality

jf .x � y/� f .x/f .y/j � ı (9.1)

for all x; y 2 G, then either jf .x/j � �
1Cp

1C 4ı
�
=2 for all x 2 G or f .x �y/ D

f .x/f .y/ for all x; y 2 G.

Proof. If we put " D �
1C p

1C 4ı
�
=2, then "2 � " D ı and " > 1. Suppose there

exists an a 2 G such that jf .a/j > ", say jf .a/j D "C p for some p > 0. It then
follows from (9.1) that

ˇ
ˇf
�
a2
�ˇˇ � ˇ

ˇf .a/2 � �
f .a/2 � f �a2��ˇˇ

� ˇ
ˇf .a/2

ˇ
ˇ� ˇ

ˇf .a/2 � f
�
a2
�ˇˇ

� jf .a/j2 � ı
D "C p C .2"� 1/p C p2

> "C 2p;

where we use the notations a2 D a � a, a3 D a � a2, etc. Now, make the induction
hypothesis ˇ̌

f
�
a2

n�ˇ̌
> "C .nC 1/p: .a/

Then, by (9.1) and .a/, we get

ˇ
ˇf
�
a2

nC1�ˇˇ D ˇ
ˇf
�
a2

n�
f
�
a2

n� � �
f
�
a2

n�
f
�
a2

n� � f
�
a2

n � a2n��ˇˇ

� ˇ̌
f
�
a2

n�ˇ̌2 � ı
>
�
"C .nC 1/p

�2 � �
"2 � "

�

> "C .nC 2/p;

and .a/ is established for all n 2 N .
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For every x; y; z 2 G we have

jf .x � y � z/� f .x � y/f .z/j � ı

and

jf .x � y � z/ � f .x/f .y � z/j � ı:

Thus,

jf .x � y/f .z/ � f .x/f .y � z/j � 2ı:

Hence,

jf .x � y/f .z/ � f .x/f .y/f .z/j � jf .x � y/f .z/ � f .x/f .y � z/j
C jf .x/f .y � z/ � f .x/f .y/f .z/j

� 2ı C jf .x/jı

or
jf .x � y/ � f .x/f .y/jjf .z/j � 2ı C jf .x/jı:

In particular,

jf .x � y/ � f .x/f .y/j � �
2ı C jf .x/jı�ıˇˇf �a2n�ˇˇ

for all x; y 2 G and any n 2 N . Letting n ! 1 and considering .a/, we conclude
that f .x � y/ D f .x/f .y/ for all x; y 2 G. ut

In the proof of the preceding theorem, the multiplicative property of the norm
was crucial. Indeed, the proof above works also for functions f W G ! E , where
E is a normed algebra in which the norm is multiplicative, i.e., kxyk D kxkkyk for
any x; y 2 E . Examples of such real normed algebras are the quaternions and the
Cayley numbers.

J. Baker [16] gave the following example to present that the theorem is false if
the algebra does not have the multiplicative norm.

Example. Given ı > 0, choose an " with j"� "2j D ı. Let M2.C/ denote the space
of 2 � 2 complex matrices with the usual norm. Let us define f W R ! M2.C/ by

f .x/ D
	
ex 0

0 "




for all x 2 R. Then f is unbounded and it satisfies kf .x C y/ � f .x/f .y/k D ı

for all x; y 2 R. However, f is not exponential.
L. Székelyhidi [341] has generalized the result of Baker, Lawrence, and Zorzitto

[17] in another way. Let .G; �/ be a semigroup and let V be a vector space of
complex-valued functions on G. V is called right invariant if f belongs to V im-
plies that the function f .x � y/ belongs to V for each fixed y 2 G. Similarly, we
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may define left invariant vector spaces, and we call V invariant if it is right and left
invariant. Following Székelyhidi, a functionm W G ! C is called an exponential if
m.x � y/ D m.x/m.y/ for any x; y 2 G.

The main theorem of Székelyhidi [341] is the following:

Theorem 9.2 (Székelyhidi). Let .G; �/ be a semigroup and V be a right invariant
vector space of complex-valued functions on G. Let f;m W G ! C be functions
such that the function 'y.x/ D f .x � y/ � f .x/m.y/ belongs to V for each fixed
y 2 G. Then either f belongs to V or m is an exponential.

Proof. Assume that m is not an exponential. Then there exist y; z 2 G such that
m.y � z/ �m.y/m.z/ ¤ 0. However, we have

f .x � y � z/ � f .x � y/m.z/ D �
f .x � y � z/ � f .x/m.y � z/

�

� m.z/
�
f .x � y/ � f .x/m.y/

�

C f .x/
�
m.y � z/�m.y/m.z/

�

and hence

f .x/ D ��
f .x � y � z/� f .x � y/m.z/� � �

f .x � y � z/ � f .x/m.y � z/
�

C m.z/
�
f .x � y/ � f .x/m.y/�� � �m.y � z/ �m.y/m.z/��1

for any x 2 G. Now, the right-hand side, as a function of x, belongs to V , and hence
so does f . ut

Székelyhidi [341] presented the following corollary.

Corollary 9.3. Let .G; �/ be a semigroup with identity 1 and V be an invariant
vector space of complex-valued functions on G. Let f;m W G ! C be functions
such that the functions

'y.x/ D f .x � y/ � f .x/m.y/ and  x.y/ D f .x � y/� f .x/m.y/

belong to V for each fixed y 2 G and x 2 G, respectively. Then either f belongs
to V orm is an exponential and f .x/ D f .1/m.x/ for any x 2 G.

Proof. Suppose that f does not belong to V . Then, by the preceding theorem,m is
an exponential. On the other hand, the function  1.y/ D f .y/�f .1/m.y/ belongs
to V and we have

f .x � y/ � f .1/m.x � y/
D f .x � y/ � f .x/m.y/C �

f .x/ � f .1/m.x/�m.y/

for all x; y 2 G. If there exists an x0 2 G such that f .x0/ ¤ f .1/m.x0/, then m
belongs to V and so does f , which is a contradiction. Hence, f .x/ D f .1/m.x/

holds true for all x 2 G. ut
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Applying Corollary 9.3, Székelyhidi [341] generalized the theorem of Baker,
Lawrence, and Zorzitto as one can see in the following corollary.

Corollary 9.4. Let .G; �/ be an abelian group with identity and let f;m W G ! C
be functions such that there exist functions M1;M2 W G ! Œ0;1/ with

jf .x � y/ � f .x/m.y/j � min
˚
M1.x/;M2.y/

�

for all x; y 2 G. Then either f is bounded or m is an exponential and f .x/ D
f .1/m.x/ for all x 2 G.

Proof. Let V be the space of bounded complex-valued functions defined on G.
Obviously, V is an invariant vector space and we can apply Corollary 9.3. ut

During the thirty-first International Symposium on Functional Equations, Th. M.
Rassias [291] introduced the term mixed stability of the function f W E ! R
(or C), where E is a Banach space, with respect to two operations “addition” and
“multiplication” among any two elements of the set

˚
x; y; f .x/; f .y/

�
. Especially,

he raised an open problem concerning the behavior of solutions of the inequality

jf .x C y/ � f .x/f .y/j � �
�kxkp C kykp�

(see also [312]).
In connection with this open problem, S.-M. Jung [164] generalized the theorem

of Baker, Lawrence, and Zorzitto; more precisely, he proved the superstability of
the exponential equation when the Cauchy difference f .x C y/ � f .x/f .y/ is not
bounded. Let H W Œ0;1/2 ! Œ0;1/ be a monotonically increasing function (in
both variables) for which there exist, for given u; v � 0, an ˛ D ˛.u; v/ > 0 and a
w0 D w0.u; v/ > 0 such that

H.u; v C w/ � ˛.u; v/H.w;w/ (9.2)

for all w � w0.

Theorem 9.5 (Jung). Let E be a complex normed space and let f W E ! C be a
function for which there exist a z 2 E .z ¤ 0/ and a real number ˇ .0 < ˇ < 1/

such that 1X

kD1
H
�
kkzk; kzk�jf .z/j�k�1 < ˇ (9.3)

and
H
�
nkzk; nkzk� D o

�jf .z/jn� as n ! 1: (9.4)

Moreover, assume that f satisfies

jf .x C y/� f .x/f .y/j � H
�kxk; kyk� (9.5)

for all x; y 2 E . Then f is an exponential function.



212 9 Exponential Functional Equations

Proof. We use induction on n to prove

ˇ
ˇf .nz/ � f .z/nˇˇ �

n�1X

kD1
H
�
kkzk; kzk�jf .z/jn�k�1 .a/

for all integers n � 2. In view of (9.5), .a/ is true for n D 2. If we assume that .a/
is valid for some integer n � 2, then we get for nC 1

ˇ
ˇf
�
.nC 1/z

� � f .z/nC1ˇˇ

� ˇ
ˇf
�
.nC 1/z

�� f .nz/f .z/
ˇ
ˇC jf .z/jˇˇf .nz/ � f .z/nˇˇ

� H
�
nkzk; kzk� C

n�1X

kD1
H
�
kkzk; kzk�jf .z/jn�k

�
nX

kD1
H
�
kkzk; kzk�jf .z/jnC1�k�1

by using (9.5) and .a/.
Multiplying both sides of .a/ by jf .z/j�n and using (9.3) yield

ˇ
ˇf .nz/f .z/�n � 1

ˇ
ˇ �

n�1X

kD1
H
�
kkzk; kzk�jf .z/j�k�1 < ˇ;

which implies
lim
n!1

ˇ
ˇf .nz/f .z/�n

ˇ
ˇ � 1 � ˇ > 0: .b/

Hence, it follows from (9.4) and .b/ that

H
�
nkzk; nkzk� D o

�jf .nz/j� as n ! 1: .c/

Now, let x; y 2 E be fixed arbitrarily, and choose an n 2 N such that

H
�kxk; ky C nzk� � H

�kxk; kyk C nkzk� � ˛
�kxk; kyk�H �nkzk; nkzk�

holds true (see (9.2)). We then have

jf .nz/jjf .x C y/� f .x/f .y/j � jf .x C y/f .nz/ � f .x C y C nz/j
C jf .x C y C nz/ � f .x/f .y C nz/j
C jf .x/jjf .y C nz/ � f .y/f .nz/j

� H
�kx C yk; nkzk� CH

�kxk; ky C nzk�

C jf .x/jH �kyk; nkzk�
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and hence
jf .nz/jjf .x C y/� f .x/f .y/j � CH

�
nkzk; nkzk� .d/

for some C > maxf˛.kx C yk; 0/; ˛.kxk; kyk/; ˛.kyk; 0/g. Letting n ! 1 in
.d/ and comparing this with .c/, we conclude that f is an exponential function. ut

P. Găvruta [116] also gave an answer to the problem suggested by Rassias con-
cerning the mixed stability.

Theorem 9.6 (Găvruta). Let E1 and E2 be a real normed space and a normed
algebra with multiplicative norm, respectively. If a function f W E1 ! E2 satisfies
the inequality

kf .x C y/ � f .x/f .y/k � �
�kxkp C kykp� (9.6)

for all x; y 2 E1 and for some p > 0 and � > 0, then either

kf .x/k � ıkxkp for all x 2 E1 with kxk � 1

or f is an exponential function, where ı D .1=2/
�
2p C .4p C 8�/1=2

�
.

Proof. Assume that there exists an x0 2 E1 with kx0k � 1 and kf .x0/k > ıkx0kp .
Then, there exists an " > 0 such that

kf .x0/k > .ı C "/kx0kp :

It follows from (9.6) that

�
�f .2x0/� f .x0/

2
�
� � 2�kx0kp :

Since E2 is a normed algebra with multiplicative norm, we have

kf .2x0/k � kf .x0/k2 � �
�f .2x0/ � f .x0/2

�
�

> .ı C "/2kx0k2p � 2�kx0kp
� �

.ı C "/2 � 2�
�kx0kp :

By the definition of ı, we get

ı2 D 2pı C 2� and ı > 2p

and hence
kf .2x0/k > .ı C 2"/2pkx0kp :

We will now prove that

kf .2nx0/k > .ı C 2n"/k2nx0kp .a/
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for all n 2 N . It follows from (9.6) that

�
�f
�
2nC1x0

� � f .2nx0/
2
�
� � 2�k2nx0kp:

By applying .a/, we obtain

��f
�
2nC1x0

��� � kf .2nx0/k2 � ��f
�
2nC1x0

� � f .2nx0/
2
��

> .ı C 2n"/2k2nx0k2p � 2�k2nx0kp
� �

.ı C 2n"/2 � 2�
�k2nx0kp

>
�
ı C 2nC1"

�
2pk2nx0kp ;

which proves the validity of the inequality .a/.
If we set xn D 2nx0, then kxnk � 1 for any n 2 N . By .a/, we have

lim
n!1 kxnkp=kf .xn/k D 0: .b/

Choose x; y; z 2 E1 with f .z/ ¤ 0. It then follows from (9.6) that

kf .z/f .x C y/ � f .x C y C z/k � �
�kzkp C kx C ykp�;

kf .x C y C z/ � f .x/f .y C z/k � �
�kxkp C ky C zkp�:

Hence, we have

kf .z/f .x C y/ � f .x/f .y C z/k
� �

�kzkp C kxkp C kx C ykp C ky C zkp�: .c/

In view of (9.6), we get

kf .x/f .y C z/ � f .x/f .y/f .z/k � �kf .x/k�kykp C kzkp�;

which together with .c/ yields

kf .z/f .x C y/� f .x/f .y/f .z/k � �'.x; y; z/; .d/

where

'.x; y; z/ D kxkp C kzkp C kx C ykp C ky C zkp C kf .x/k�kykp C kzkp�:

Since E2 is a normed algebra with multiplicative norm, it follows from .d/ that

kf .x C y/ � f .x/f .y/k � �'.x; y; z/=kf .z/k:

If we put z D xn, then it follows from .b/ that
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lim
n!1'.x; y; xn/=kf .xn/k D 0

and consequently we obtain f .x C y/ D f .x/f .y/. ut

9.2 Stability in the Sense of Ger

The group structure in the range space of the exponential functional equation is the
“multiplication.” R. Ger [122] pointed out that the superstability phenomenon of the
functional inequality (9.1) is caused by the fact that the natural group structure in
the range space is disregarded. Thus, it seems more natural to suggest the stability
problem in the following form:

ˇ
ˇ
ˇ̌ f .x C y/

f .x/f .y/
� 1

ˇ
ˇ
ˇ̌ � ı: (9.7)

If, for each function f W .G;C/ ! Enf0g satisfying the inequality (9.7) for some
ı > 0 and for all x; y 2 G, there exists an exponential function M W G ! Enf0g
such that

kf .x/=M.x/ � 1k � ˆ.ı/ and kM.x/=f .x/ � 1k � ‰.ı/

for all x 2 G, where ˆ.ı/ and ‰.ı/ depend on ı only, then the exponential func-
tional equation is said to be stable in the sense of Ger.

Let .G;C/ be an amenable semigroup (for the definition of amenability see Sec-
tion 2.5), and let ı 2 Œ0; 1/ be a fixed number. Ger [122] proved that if a function
f W G ! Cnf0g satisfies the inequality (9.7) for all x; y 2 G, then there exists an
exponential functionM W G ! Cnf0g such that

max
˚jf .x/=M.x/ � 1j; jM.x/=f .x/ � 1j� � .2 � ı/=.1� ı/

for all x 2 G.
We notice that the bound .2 � ı/=.1 � ı/ in the above inequality does not tend

to zero even though ı does tend to zero. R. Ger and P. Šemrl [123] resolved this
shortcoming and proved the following theorem.

Theorem 9.7 (Ger and Šemrl). Let .G;C/ be a cancellative abelian semigroup,
and let ı be a given number with 0 � ı < 1. Assume that a function f W G ! Cnf0g
satisfies the inequality (9.7) for all x; y 2 G. Then there exists a unique exponential
functionM W G ! Cnf0g such that

max
˚jf .x/=M.x/ � 1j; jM.x/=f .x/ � 1j�

�
�
1C .1 � ı/�2 � 2�.1C ı/=.1� ı/

�1=2�1=2

for each x 2 G.
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Proof. Every nonzero complex number 	 can be uniquely expressed as

	 D j	j exp
�
i arg.	/

�
;

where �� < arg.	/ � � . Then, (9.7) yields

ˇ
ˇ
ˇ̌ jf .x C y/j
jf .x/jjf .y/j exp

�
i.argf .x C y/ � argf .x/ � argf .y//

� � 1
ˇ
ˇ
ˇ̌ � ı

for every x; y 2 G. It follows that

1 � ı � jf .x C y/j
jf .x/jjf .y/j � 1C ı .a/

and

argf .x C y/ � argf .x/ � argf .y/ 2 2�Z C � � sin�1 ı; sin�1 ı
�

for all x; y 2 G. As ı < 1, it necessarily holds true that sin�1 ı < �=2.
This congruence, together with Corollary 2.48, implies that there exists a func-

tion p W G ! R such that

p.x C y/� p.x/ � p.y/ 2 2�Z .b/

for all x; y 2 G, and
j argf .x/ � p.x/j � sin�1 ı .c/

for any x 2 G.
Put h.x/ D jf .x/j. It then follows from .a/ that

1� ı � h.x C y/

h.x/h.y/
� 1C ı

for any x; y 2 G. Consequently, we have

j lnh.x C y/ � ln h.x/ � ln h.y/j � � ln.1 � ı/

for x; y 2 G. According to an extended version of Theorem 2.3, there exists an
additive function a W G ! R such that

j lnh.x/ � a.x/j � � ln.1 � ı/ .d/

for every x 2 G.
Let us define a functionM W G ! Cnf0g by

M.x/ D exp
�
a.x/C ip.x/

�
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for each x 2 G. It follows from the additivity of a and .b/ that M is an exponential
function. Moreover, we have

jf .x/=M.x/ � 1j D ˇ
ˇ exp

�
lnh.x/ � a.x/

�
exp

�
i.argf .x/ � p.x//

� � 1ˇˇ

for every x 2 G. Applying .c/ and .d/ we see that the number f .x/=M.x/ belongs
to the set

� D ˚
	 2 C j 1 � ı � j	j � .1 � ı/�1; � sin�1 ı � arg.	/ � sin�1 ı

�
:

Obviously,

sup
˚j	 � 1j ˇˇ 	 2 �� D ˇ

ˇ.1 � ı/�1 exp
�
i sin�1 ı

� � 1
ˇ
ˇ

D
�
1C .1 � ı/�2 � 2

�
.1C ı/=.1 � ı/�1=2

�1=2
:

The proof of the inequality for jM.x/=f .x/�1j continues through in exactly the
same way. ut

It was shown that the assumption ı < 1 is indispensable in the above stability
result.

9.3 Stability on a Restricted Domain

This section presents stability problems of the exponential functional equation on
a restricted domain, and these results will be applied to the study of asymptotic
properties of exponential functions. More precisely, it will be proved that a function
f W E ! C is an exponential function if and only if f .xC y/� f .x/f .y/ ! 0 as
kxk C kyk ! 1 under some suitable conditions, where E is a real (or complex)
normed space. Moreover, we also present that a function f W E ! C n f0g is
exponential if and only if f .x C y/=f .x/f .y/ ! 1 as kxk C kyk ! 1.

Let B D ˚
.x; y/ 2 E2 j kxk < d and kyk < d� for a given d > 0. S.-M. Jung

[180] proved the superstability of the exponential functional equation on a restricted
domain:

Theorem 9.8. Let E be a real .or complex/ normed space. Assume that a function
f W E ! C satisfies the inequality

jf .x C y/� f .x/f .y/j � ı

for some ı > 0 and for all .x; y/ 2 E2nB . If there exists a number C > 0 such that

sup
kxk�d

jf .x/j � C; (9.8)
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then either f is an exponential function or f is bounded. In the latter case,

jf .x/j � .1=2/
�
1C .1C 4.1C 2C /ı/1=2

�

for all x 2 E .

Proof. Suppose that .x; y/ is an arbitrary point of B . In the case of x D 0, choose
a z 2 E with kzk D d . Otherwise, let us choose z D �

1C d=kxk�x. Then, we have

.x � z; y C z/; .z; x � z/; .y; z/ 2 E2nB:

With such a z, by using the relation

f .x C y/ � f .x/f .y/ D �
f .x C y/� f .x � z/f .y C z/

�

� f .y/�f .x/ � f .z/f .x � z/
�

Cf .x � z/
�
f .y C z/� f .y/f .z/

�
;

we obtain

jf .x C y/ � f .x/f .y/j � �
1C jf .y/j C jf .x � z/j�ı: .a/

Hence, it follows from .a/ and (9.8) that

jf .x C y/� f .x/f .y/j � .1C 2C /ı

for all .x; y/ 2 E2. Now, the assertion follows from Theorem 9.1. ut
Jung [180] was able to deduce an asymptotic result analogous to an asymptotic

behavior of additive functions (see Theorem 2.34 or Corollary 2.35).

Corollary 9.9. Let E be a real .or complex/ normed space. Suppose a function
f W E ! C is unbounded. Moreover, assume that there exists, for infinitely many
n 2 N , a constant Cn > 0 such that

sup
kxk�n

jf .x/j � Cn: (9.9)

Then f is an exponential function if and only if

f .x C y/ � f .x/f .y/ ! 0 as kxk C kyk ! 1: (9.10)

Proof. Assume that the asymptotic condition (9.10) holds true. Let ı > 0 be given.
On account of (9.9) and (9.10), there exists a sufficiently large n 2 N such that the
inequality (9.9) holds true and

jf .x C y/� f .x/f .y/j � ı
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for kxk � n or kyk � n. It then follows from Theorem 9.8 that either

jf .x/j � .1=2/
�
1C

p
1C 4.1C 2Cn/ı

�
for all x 2 E;

or f is exponential. Since f is unbounded, f should be exponential. The reverse
assertion is trivial. ut

Jung [180] has also proved the stability (in the sense of Ger) of the exponential
functional equation on restricted domains.

Theorem 9.10 (Jung). Let d andB be given as in Theorem 9.8. LetE be a real .or
complex/ normed space. If a function f W E ! Cnf0g satisfies the inequality (9.7)
for some ı 2 Œ0; 1=2/ and for all .x; y/ 2 E2nB , then there exists an exponential
functionM W E ! Cnf0g such that

max
˚jM.x/=f .x/� 1j; jf .x/=M.x/ � 1j�

�
	
1C .1C ı/2

.1� ı/4
� 2�1 � 4ı2

��1C ı

1� ı

�3=2
1=2

for all x 2 E .

Proof. Suppose .x; y/ belongs toB . Applying the same argument given in the proof
of Theorem 9.8, we can choose a z 2 E such that

.x � z; y C z/; .z; x � z/; .y; z/ 2 E2nB:

By using (9.7) and the relation

f .x C y/

f .x/f .y/
D f .x C y/

f .x � z/f .y C z/
� f .z/f .x � z/

f .x/
� f .y C z/

f .y/f .z/
;

we get
.1 � ı/2
1C ı

�
ˇ
ˇ
ˇ
ˇ
f .x C y/

f .x/f .y/

ˇ
ˇ
ˇ
ˇ � .1C ı/2

1 � ı
: .a/

According to (9.7), the complex number f .xCy/f .x�z/�1f .yCz/�1 is separated
from 1 by a distance ı at most. Hence, it holds true that

arg
f .x C y/

f .x � z/f .y C z/
2 2�Z C � � sin�1 ı; sin�1 ı

�
;

where 0 � sin�1 ı < �=6 because of 0 � ı < 1=2. We obtain analogous relations
for f .x/f .z/�1f .x�z/�1 and f .yCz/f .y/�1f .z/�1 in the same way. Therefore,
we have

argf .x C y/ � argf .x/ � argf .y/ 2 2�Z C � � 3 sin�1 ı; 3 sin�1 ı
�

.b/

for any .x; y/ 2 B .
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Indeed, the relations .a/ and .b/ hold true for all .x; y/ 2 E2. Taking logarithms
on both sides of .a/ yields

ˇ
ˇ ln jf .x C y/j � ln jf .x/j � ln jf .y/jˇˇ � ln

1C ı

.1 � ı/2

for all x; y 2 E . In view of Theorem 2.3, there exists a unique additive function
a W E ! R such that

ˇ̌
a.x/ � ln jf .x/jˇ̌ � ln

1C ı

.1 � ı/2
.c/

for all x 2 E .
On account of .b/ and Corollary 2.48, there exists a function b W E ! R such

that

b.x C y/ � b.x/ � b.y/ 2 Z; .d /

for any x; y 2 E , and

j argf .x/ � 2�b.x/j � 3 sin�1 ı .e/

for every x 2 E .
Now, let us define a functionM W E ! Cnf0g by

M.x/ D ea.x/C2�ib.x/

for each x 2 E . From the additivity of a and .d/, it follows that M is exponential.
Let x 2 E be given. Since f .x/ can be expressed as eln jf.x/jCi argf.x/, we have

jM.x/=f .x/� 1j D ˇ
ˇea.x/�ln jf.x/jei.2�b.x/�argf.x// � 1ˇˇ:

Now, let us define

D D
�
rei� 2 C

ˇ
ˇ
ˇ
.1 � ı/2
1C ı

� r � 1C ı

.1 � ı/2 ; �3 sin�1 ı � � � 3 sin�1 ı

:

If we set

z1 D .1 � ı/2

1C ı
ei3 sin�1 ı and z2 D 1C ı

.1 � ı/2
ei3 sin�1 ı ;

then

jz1 � 1j2 D .1 � ı/4

.1C ı/2
� 2 .1 � ı/5=2

.1C ı/1=2
.1 � 4ı2/C 1;

jz2 � 1j2 D .1C ı/2

.1 � ı/4
� 2

�1C ı

1 � ı
�3=2

.1 � 4ı2/C 1:
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We now have

jz2 � 1j2 � jz1 � 1j2

D .1C ı/2

.1 � ı/4
	
1 � .1 � ı/8

.1C ı/4



C 2

�
1 � 4ı2� .1 � ı/5=2

.1C ı/1=2

	
1 � .1C ı/2

.1 � ı/4



D .1C ı/2

.1 � ı/4
	
1 � .1 � ı/4

.1C ı/2


 
.1 � ı/4
.1C ı/2

� 2
�
1 � 4ı2

� .1 � ı/5=2
.1C ı/1=2

C 1

!

:

On the other hand, since .1� 4ı2/p1 � ı2 � 1, we have .1� 4ı2/.1� ı/1=2 �
.1C ı/�1=2 and hence,

�
1 � 4ı2

� .1 � ı/5=2

.1C ı/1=2
� .1 � ı/2

1C ı
or � 2�1 � 4ı2

� .1 � ı/5=2
.1C ı/1=2

� �2.1� ı/2

1C ı
:

Thus, we get

jz2 � 1j2 � jz1 � 1j2 � .1C ı/2

.1 � ı/4
	
1 � .1 � ı/4

.1C ı/2


	
.1 � ı/2

1C ı
� 1


2
� 0;

and hence we conclude that jz2 � 1j D max
˚jz � 1j j z 2 D�.

Therefore, it follows from .c/ and .e/ that

jM.x/=f .x/ � 1j � jz2 � 1j

D
	
1C .1C ı/2

.1 � ı/4
� 2 �1 � 4ı2

� �1C ı

1 � ı
�3=2
1=2

:

The proof of the inequality for jf .x/=M.x/ � 1j goes through in the same way.
Hence, we omit the proof. ut

9.4 Exponential Functional Equation of Other Type

Every complex-valued function of the form f .x/ D ax .x 2 C/, where a > 0 is a
given number, is a solution of the functional equation

f .xy/ D f .x/y : (9.11)

Hence, the above functional equation may be regarded as a variation of the expo-
nential functional equation.

If a function f W R ! .0;1/ satisfies the equation (9.11) for all x; y 2 R, it
then follows from (9.11) that

f .x/y D f .y/x
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for all x; y 2 R. Thus, there exists a real number a D f .1/ > 0 such that f .x/ D
ax for all x 2 R. On the other hand, each function f W R ! .0;1/ of the form
f .x/ D ax satisfies the equation (9.11) for any x; y 2 R. Therefore, the general
solution f W R ! .0;1/ of the functional equation (9.11) is f .x/ D ax , where
a > 0 is a given number.

Let us introduce some convenient notations:

ei .x/ D x2
i

; pn.x/ D
n�1Y

iD0
ei .x/; and ˛.x/ D

1X

nD1
pn.x/

�1

for each x 2 R and n 2 N0.
S.-M. Jung [165] proved the stability of the equation (9.11) in the sense of Ger.

Theorem 9.11 (Jung). Let ı 2 .0; 1/ be a given number. If a function f W .0;1/!
.0;1/ satisfies the inequality

jf .xy/=f .x/y � 1j � ı (9.12)

for all x; y > 0, then there exists a unique constant a > 0 such that

.1 � ı/˛.x/ � ax=f .x/ � .1C ı/˛.x/ (9.13)

for all x > 1.

Proof. Substituting en�1.x/ for x and y in (9.12) yields

1 � ı � f .en.x//

f .en�1.x//en�1.x/
� 1C ı

for every x > 0 and n 2 N . For n > m � 0, we obtain

f .en.x//

f .em.x//em.x/emC1.x/			en�1.x/

D f .en.x//

f .en�1.x//en�1.x/

	
f .en�1.x//

f .en�2.x//en�2.x/


en�1.x/

� � �
	
f .emC1.x//
f .em.x//em.x/


emC1.x/emC2.x/			en�1.x/

and

	
f .en.x//

f .em.x//em.x/emC1.x/			en�1.x/


1=pn.x/

D f .en.x//
1=pn.x/

f .em.x//1=pm.x/
:
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Hence, we have

.1 � ı/˛n.x/�˛m.x/ � f .en.x//
1=pn.x/

f .em.x//1=pm.x/
� .1C ı/˛n.x/�˛m.x/; .a/

where

˛n.x/ D
nX

iD1
pi .x/

�1:

Since the sequence f˛n.x/g converges as n ! 1 for x > 1, it follows from
.a/ that the sequence flnf .en.x//1=pn.x/g is a Cauchy sequence for each x > 1.
Therefore, we can define

L.x/ D lim
n!1 ln f

�
en.x/

�1=pn.x/

and

F.x/ D eL.x/

for all x > 1. In fact, we get

F.x/ D lim
n!1f

�
en.x/

�1=pn.x/
.b/

for any x > 1.
Substituting en.x/ and en.y/ for x and y in (9.12), respectively, yields

.1 � ı/f �en.x/
�en.y/ � f

�
en.xy/

� � .1C ı/f
�
en.x/

�en.y/
.c/

for all x; y > 0 and for any n 2 N . Hence, by .b/ and .c/, we have

lim
n!1.1 � ı/1=pn.xy/f

�
en.x/

�en.y/=pn.xy/ � F.xy/

and

F.xy/ � lim
n!1.1C ı/1=pn.xy/f

�
en.x/

�en.y/=pn.xy/

for all x; y > 0 with xy > 1. Since pn.xy/ ! 1 as n ! 1 (xy > 1) and
en.y/=pn.xy/ D y=pn.x/ for any n 2 N , it follows from .b/ and the preceding
inequalities that F.xy/ D F.x/y for x > 1 and y > 0 with xy > 1. Therefore,
there exists a constant a > 0 such that F.x/ D ax for all x > 1 (see above). By
puttingm D 0 in .a/ and using .b/, we easily see the validity of (9.13).

Assume now that b is another positive constant such that

.1� ı/˛.x/ � bx=f .x/ � .1C ı/˛.x/
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for all x > 1. Without loss of generality, let b > a. Then, the following inequalities

	
1 � ı

1C ı


̨ .x/

�
	
b

a


x
D bx

f .x/

f .x/

ax
�
	
1C ı

1 � ı

̨ .x/

lead to a contradiction, since ˛.x/ < 1 for x > 2 and .b=a/x ! 1 as x ! 1.
Therefore, we conclude that there exists a unique constant a > 0 satisfying the
relations in (9.13). ut

Let d > 0 be given, and let ı 2 .0; 1/ satisfy the condition

1C ı < 2.1� ı/d : (9.14)

It is not difficult to demonstrate that there exists at least one ı 2 .0; 1/ satisfying the
condition (9.14) for any d > 0.

The following theorem is also due to Jung [165].

Theorem 9.12. Let a function f W .0;1/ ! .0;1/ satisfy the inequality (9.12)
for all x; y > 0 with x C y � d . Then there exists a unique constant a > 0 such
that

	
2 � 1C ı

.1 � ı/d


̨ .x/

� ax

f .x/
�
	
1C ı

.1 � ı/d


̨ .x/

(9.15)

for any x > 1.

Proof. Let x; y > 0 be given with x C y < d . Choose a t > 0 satisfying tx � d .
From (9.12) and the relation

f .xy/

f .x/y
D f .xy/

f .tx/y=t

 
f .tx/1=t

f .x/

!y
;

it follows that
1 � ı

.1C ı/d
� f .xy/

f .x/y
� 1C ı

.1 � ı/d
:

Hence, the inequality

jf .xy/=f .x/y � 1j � 1C ı

.1 � ı/d � 1 .a/

holds true for x; y > 0 with x C y < d . In view of the hypothesis, the inequality
.a/ holds true for all x; y > 0. The condition (9.14) guarantees that the value of
the right-hand side of .a/ belongs to .0; 1/. Hence, on account of .a/ and Theorem
9.11, there exists a unique constant a > 0 satisfying (9.15) for each x > 1. ut

The following corollary is an easily applicable version of Theorem 9.12 (see
[165]).
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Corollary 9.13. Let " > 1 be given. If a function f W .0;1/ ! .0;1/ satisfies
the inequality (9.12) for all x; y > 0 with x C y � d , then there exists a unique
constant a > 0 such that

	
2 � 1C ı

.1 � ı/d


̨ ."/

� ax

f .x/
�
	
1C ı

.1 � ı/d


̨ ."/

for all x � ".

Now, we provide a sufficient condition for a function f W .0;1/ ! .0;1/ to be
asymptotically exponential (ref. [165]).

Corollary 9.14. If a function f W .0;1/ ! .0;1/ satisfies the condition

ˇ
ˇf .xy/=f .x/y � 1ˇˇ D o

�
.x C y/�1

�
as x C y ! 1; (9.16)

then there exists a unique constant a > 0 such that f .x/ D ax for any x > 1.

Proof. Let " > 1 be arbitrary. According to (9.16), there exists a sequence fıng,
monotonically decreasing to zero, such that

ˇ
ˇf .xy/=f .x/y � 1ˇˇ � ın=n

for all x; y > 0 with x C y � n. By Corollary 9.13, there exists a unique constant
an > 0 such that

	
2 � 1C ın=n

.1 � ın=n/n

̨ ."/

� axn
f .x/

�
	
1C ın=n

.1 � ın=n/n


̨ ."/

.a/

for every x � ". Obviously, there exists an infinite subset I of N such that the
sequence f.1 C ın=n/=.1 � ın=n/

ng decreases monotonically to 1 as n tends to
infinity through I . Let m; n 2 I satisfy n > m. In view of .a/ and the above
consideration, we get

	
2 � 1C ım=m

.1 � ım=m/m

̨ ."/

� axn
f .x/

�
	

1C ım=m

.1 � ım=m/m


̨ ."/

for any x � ", which implies am D an D a for all m; n 2 I . Letting n ! 1
through I in .a/ and using the above consideration again, we can conclude that
f .x/ D ax for any x � ". Since " > 1 was given arbitrarily, f .x/ D ax holds true
for all x > 1. ut



Chapter 10
Multiplicative Functional Equations

The multiplicative functional equation f .xy/ D f .x/f .y/ may be identified with
the exponential functional equation if the domain of functions involved is a semi-
group. However, if the domain space is a field or an algebra, then the former
is obviously different from the latter. It is well-known that the general solution
f W R ! R of the multiplicative functional equation f .xy/ D f .x/f .y/ is
f .x/ D 0, f .x/ D 1, f .x/ D eA.ln jxj/jsign.x/j, and f .x/ D eA.ln jxj/sign.x/ for
all x 2 R, where A W R ! R is an additive function and sign W R ! f�1; 0; 1g is
the sign function. If we impose the continuity on solution functions f W R ! R
of the multiplicative equation, then f .x/ D 0, f .x/ D 1, f .x/ D jxj˛, and
f .x/ D jxj˛sign.x/ for all x 2 R, where ˛ is a positive real constant. The first
section deals with the superstability of the multiplicative Cauchy equation and a
functional equation connected with the Reynolds operator. In Section 10.2, the re-
sults on ı-multiplicative functionals on complex Banach algebras will be discussed
in connection with the AMNM algebras which will be described in Section 10.3.
Another multiplicative functional equation f .xy/ D f .x/y for real-valued func-
tions defined on R will be discussed in Section 10.4. This functional equation is
superstable in the sense of Ger. In the last section, we will prove that a new multi-
plicative functional equation f .x C y/ D f .x/f .y/f .1=x C 1=y/ is stable in the
sense of Ger.

10.1 Superstability

If the domain of functions involved is a semigroup, the multiplicative Cauchy func-
tional equation

f .xy/ D f .x/f .y/

may be identified with the exponential Cauchy functional equation f .x C y/ D
f .x/f .y/. Therefore, in view of Theorem 9.1, it is obvious that the multiplicative
Cauchy equation is superstable.

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 10, c� Springer Science+Business Media, LLC 2011
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Let .G; �/ be a semigroup and let ı > 0 be given. If a function f W G ! C
satisfies the inequality

jf .x � y/� f .x/f .y/j � ı

for all x; y 2 G, then either jf .x/j � �
1Cp

1C 4ı
�
=2 for all x 2 G or f .x �y/ D

f .x/f .y/ for all x; y 2 G.

Let .G; ı/ be an abelian semigroup and let g W G ! G be a given function. We
now consider a functional equation connected with the Reynolds operator,

f
�
x ı g.y/� D f .x/f .y/ (10.1)

for all x; y 2 G. If g is the identity function, then the functional equation (10.1)
reduces to the multiplicative Cauchy functional equation. If .G; ı/ D .R; �/ and
g D f , then the equation (10.1) reduces to the functional equation

f
�
xf .y/

� D f .x/f .y/;

whose origin is in the averaging theory applied to turbulent fluid motion. This func-
tional equation is connected with some linear operators, i.e., the Reynolds operator,
the averaging operator, and the multiplicatively symmetric operator.

In 2007, A. Najdecki [257] proved that the functional equation (10.1) is super-
stable.

Theorem 10.1 (Najdecki). Let .G; ı/ be an abelian semigroup, let g W G ! G be
a given function, and let K denote either R or C. If a function f W G ! K satisfies
the inequality

ˇ
ˇf
�
x ı g.y/� � f .x/f .y/

ˇ
ˇ � ı (10.2)

for all x; y 2 G and for some ı > 0, then either f is bounded or f is a solution of
the functional equation (10.1).

Proof. Suppose that f is unbounded. Then we can choose a sequence fxng of
elements of G such that 0 ¤ jf .xn/j ! 1 as n ! 1. Put y D xn in (10.2)
to obtain

ˇ
ˇf
�
x ı g.xn/

�ı
f .xn/� f .x/

ˇ
ˇ � ı=jf .xn/j: .a/

Since jf .xn/j ! 1 as n ! 1, it follows from .a/ that

f .x/ D lim
n!1f

�
x ı g.xn/

�ı
f .xn/ .b/

for all x 2 G.
Replacing x in (10.2) with x ı g.xn/ yields

ˇ̌
f
�
x ı g.xn/ ı g.y/� � f

�
x ı g.xn/

�
f .y/

ˇ̌ � ı .c/
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for any x; y 2 G. It follows from .c/ that

lim
n!1

f
�
x ı g.y/ ı g.xn/

�� f
�
x ı g.xn/

�
f .y/

f .xn/
D 0: .d/

Thus, by .b/ and .d/, we obtain

f
�
x ı g.y/� D lim

n!1
f
�
x ı g.y/ ı g.xn/

�

f .xn/

D lim
n!1

f
�
x ı g.y/ ı g.xn/

� � f �x ı g.xn/
�
f .y/

f .xn/

C lim
n!1

f
�
x ı g.xn/

�

f .xn/
f .y/

D f .x/f .y/

for all x; y 2 G. ut

10.2 ı-Multiplicative Functionals

In this section, let E denote a commutative complex Banach algebra and let E�
denote the dual space of E .

For any linear functional � on E we define

L�.x; y/ D �.xy/� �.x/�.y/

for all x; y 2 E . If the norm of the bilinear functional L� is less than or equal to
ı > 0, then � is called ı-multiplicative.

We introduce basic lemmas presented by B. E. Johnson [146].

Lemma 10.2. Let ı > 0 be given. If � 2 E� is ı-multiplicative, then k�k � 1C ı.

Proof. By the hypothesis, we have

j�.xy/� �.x/�.y/j � ıkxkkyk .a/

for all x; y 2 E . Given " with 0 < " < k�k, choose an x with kxk D 1 such that
k�k � " < j�.x/j and put y D x in .a/. Then, we get

ˇ
ˇ�.x/2 � �

�
x2
�ˇˇ � ı

and hence
�k�k � "

�2
< j�.x/j2 � ˇ̌

�
�
x2
�ˇ̌C ı � k�k C ı;
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since kx2k � kxk2 D 1. Letting " ! 0 in the above inequality and solving the
resulting inequality, we obtain

k�k � .1=2/
�
1C

p
1C 4ı

� � 1C ı;

which ends the proof. ut
K. Jarosz [145] proved a proposition in which the same bound for � is obtained

as in Lemma 10.2, but without the assumption of continuity for the linear functional
�. The following lemma follows from Lemma 10.2 by a straightforward calculation.
Hence, we omit the proof (ref. [146]).

Lemma 10.3. Let ı > 0 be given, let a linear functional� onE be ı-multiplicative,
and let be a continuous linear functional onE . 2 E�/. Then �C is .ıC.3C
2ı/k kCk k2/-multiplicative. If 	 2 C, then .1C	/� is j1C	j.ıCj	j.1Cı/2/-
multiplicative.

If the algebra E lacks an identity, E can be extended by adjoining an identity
to E , and the extended one is denoted by E1. Each linear functional � on E can
also be extended to a linear functional Q� on E1 by putting Q�.1/ D 1. Then, � is
ı-multiplicative if and only if Q� is. In some cases, an algebra which does not have
an identity may have an approximate identity, which may be defined as follows: A
net fe˛g inE is an approximate identity forE if for each x 2 E there exists a subnet
feˇ g of fe˛g such that

lim
ˇ
eˇx D x:

Johnson estimated in [146] lower bounds for the norm of a ı-multiplicative func-
tional (cf. [137]).

Lemma 10.4. (i) Let E possess an identity 1 and let � be a ı-multiplicative linear
functional on E with 0 < ı < 1=4. Then either j1 � �.1/j < 2ı, in which case
k�k > 1 � 2ı, or k�k < 2ı.

(ii) Let K > 0 and let E have an approximate identity fe˛g with ke˛k � K for all
˛. Let 0 < ı < .4K2/�1 and let � be a ı-multiplicative linear functional onE .
Then either lim sup

˛
j1 � �.e˛/j < 2ıK2, in which case k�k > 1=K � 2ıK , or

lim sup
˛

j�.e˛/j < 2ıK2, in which case k�k < 2ıK .

Proof. Note that the first statement is a special case of the second. Let L be the set
of points of accumulation of the bounded net f�.e˛/g and let `; `0 2 L. We have

j�.e˛eˇ / � �.e˛/�.eˇ /j � ıK2:

If we take limits on suitable subnets, first for ˛ and then for ˇ, we get

j�.eˇ /� `�.eˇ /j � ıK2 and j`0.1 � `/j � ıK2 < 1=4:
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For the special case where ` D `0, we have either j1 � `j < 2ıK2 or j`j �
.1=2/

�p
1C 4ıK2 � 1

�
< 2ıK2. If j1 � `j < 2ıK2 and j`0j < 2ıK2, then

j`.1 � `0/j > 1=4, so either we have the first alternative for all ` 2 L or the second
for all ` 2 L.

The first alternative gives

lim sup
˛

j1 � �.e˛/j < 2ıK2;

so

Kk�k � lim sup
˛

j�.e˛/j > 1 � 2ıK2:

The second gives

lim sup
˛

j�.e˛/j < 2ıK2:

If ` 2 L, taking the limit on a suitable subnet in the inequality

j�.xe˛/� �.x/�.e˛/j � ıkxkK

yields j�.x/j � ıkxkK.1 � `/�1 and hence k�k � ıK.1 � `/�1 < 2ıK , which
ends the proof. ut

Using Lemmas 10.3 and 10.4, we can prove the following lemma (see [137]).

Lemma 10.5. Suppose that E has an identity 1 and let � 2 E� be ı-multiplicative
with 0 < ı < 1=4. If k�k > 2ı, then the functionals  1 D �=k�k and  2 D
�=�.1/ are 
-multiplicative, lie within a distance of 2ı.1C ı/.1 � 2ı/�1 of �, and
have k 1k D 1 and  2.1/ D 1, where 
 D .8=3/.1C 2ı/

�
3ı C 2ı2 C 2ı3

�
.

Proof. The arguments for  1 and  2 are the same. We consider  1. By the hy-
pothesis, � satisfies the first alternative of Lemma 10.4 .i/, so that k�k > 1 � 2ı.
Hence, we get

�
1 � k�k�=k�k < 2ı=.1 � 2ı/. Now, use Lemma 10.2 to obtain

k 1 � �k < 2ı.1 C ı/=.1 � 2ı/. Next, apply Lemma 10.3 with 	 C 1 D k�k�1,
so that 	 D �

1 � k�k�=k�k < 2ı=.1 � 2ı/. According to Lemma 10.3,  1 is
j1C 	j�ı C j	j.1C ı/2

�
-multiplicative. Thus,

j1C 	j�ı C j	j.1C ı/2
�
< .1 � 2ı/�2

�
3ı C 2ı2 C 2ı3

�
:

Since 0 < ı < 1=4, we have .1 � 2ı/�2 < .8=3/.1 C 2ı/ which completes the
proof. ut

B. E. Johnson [146] proved Lemma 10.5 with 
 D .1 C 2ı/
�
2ı C 4ı2 C 4ı3

�
.

Let us define

D D ˚
� 2 E� j k�k D j�.1/j D �.1/

�
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and

W.x/ D ˚
�.x/ j � 2 D�

for each x 2 E . The set W.x/ is called the numerical range of x.
Johnson [146] also presented the following lemma.

Lemma 10.6. Assume that E has an identity 1. Let b 2 E and � 2 R be given.
If <.z/ � � for all z 2 W.b/, then

�
�.	1 � b/�1

�
� � �<.	/ � �

��1
for any 	 2 C

with <.	/ > �.

Proof. Let a 2 E with kak D 1 and let � 2 E� with k�k D 1 D �.a/. Then,
g.c/ D �.ac/ is an element of D. We have

ka.	1 � b/k � ˇ
ˇ�
�
a.	1 � b/�ˇˇ D j	 � g.b/j � <�	 � g.b/� � <.	/� �:

By [22, Theorem 6], .	1� b/�1 exists. By putting

a D .	1 � b/�1
�
�.	1� b/�1

�
��1

;

we achieve the required inequality. ut
Using the previous lemmas, Johnson [146] proved the following theorem.

Theorem 10.7 (Johnson). Assume that E has an identity 1. Let ı 2 .0; 1/ be
fixed. Suppose that � 2 E� is ı-multiplicative with �.1/ D 1. Then there exists
an element  of D such that k� �  k � ı.2C ı/.

Proof. The inequality

ˇ̌
�.	1� b/�

�
.	1� b/�1

� � 1ˇ̌ � ık	1 � bk��.	1 � b/�1��

together with Lemma 10.2 implies that if 	, �, and b are as in Lemma 10.6, then

�<.	/� �
��1

.1C ı/j�.	1� b/j � �
�.	1 � b/�1��.1C ı/j�.	1� b/j

� k�k��.	1� b/�1
��j�.	1� b/j

� j�.	1� b/jˇˇ��.	1 � b/�1�ˇˇ
� 1 � ı k	1 � bk��.	1 � b/�1��

� 1 � ı k	1 � bk�<.	/ � ���1;

so

j	 � �.b/j D j�.	1� b/j � .1C ı/�1
�<.	/� � � ık	1 � bk�:
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Suppose that <.�.b// > �, then we can put 	 D �.b/ in this inequality and
consider Lemma 10.2 to see that

<��.b/�� � � ı k�.b/1� bk � ı.2C ı/kbk:

Clearly, this inequality also holds true for <.�.b// � �.
Put ı1 D ı.2Cı/ and letB� denote the closed unit ball inE�. We want to present

that D \ .� C ı1B
�/ ¤ ;. Suppose on the contrary that this set is empty. Then, we

can apply the Hahn–Banach theorem to E� in the w�-topology to find a hyperplane
strongly separating the compact convex sets D and � C ı1B

�. Thus, there exist
an a 2 E , which we can assume has norm 1, and a � 2 R with <.f .a// < �

for all f 2 D and <.f .a// > � for all f 2 � C ı1B
�. Taking a g 2 B� with

g.a/ D 1 and putting f D � � ı1g yield <.�.a// � ı1 D <.f .a// > � and
hence, <.�.a//�� > ı.2C ı/kak which is contrary to the inequality at the end of
the previous paragraph. Hence, we have verified that the set D \ .� C ı1B

�/ is not
empty. This completes the proof. ut

10.3 Theory of AMNM Algebras

As in the previous section, let E be a commutative complex Banach algebra and let
E� denote the space of continuous linear functionals on E .

We will denote by OE the set of characters of E . For each � 2 E� we put

d.�/ D inf
˚k� �  k j  2 OE [ f0g�:

We state that E is an algebra in which approximately multiplicative functionals are
near multiplicative functionals, or E is AMNM for short, if for each " > 0 there
exists a ı > 0 such that d.�/ < " whenever � is a ı-multiplicative linear functional.

Johnson [146] proved the following:

Lemma 10.8. LetE have an identity. Then the following statements are equivalent:

(i) E is AMNM;
(ii) For every sequence f�ng in E� with k L�nk ! 0 there exists a sequence f ng in

OE [ f0g with k�n �  nk ! 0;
(iii) For every sequence f�ng in E� with k L�nk ! 0 there exists a subsequence

f�ni
g and a sequence f ig in OE [ f0g with k�ni

�  ik ! 0;
(iv) For every sequence f�ng in E� with k L�nk ! 0 and inf

n
k�nk > 0 there exists

a sequence f ng in OE with k�n �  nk ! 0;
(v) For every sequence f�ng in E� with k L�nk ! 0 and �n.1/ D 1 D k�nk there

exists a sequence f ng in OE with k�n �  nk ! 0;
(vi) For any " > 0 there exists a ı > 0 such that if � 2 E� with �.1/ D 1 D k�k

and k L�k < ı, then d.�/ < ".
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Conditions (i) to (iv) are equivalent even though E lacks an identity. If E has an
approximate identity of norm 1, then (i) to (iv) are equivalent to the following:

(vii) For any " > 0 there exists a ı > 0 such that if � 2 E� with k�k D 1 and
k L�k < ı, then d.�/ < ".

Proof. The implications .i/ ) .ii/ ) .iii/ ) .i/, .i/ ) .iv/ ) .iii/, and .i/ )
.v/, .vi/, and .vii/ are elementary. The implications .v/) .iv/, .vi/) .i/, and .vii/
) .i/ follow from Lemmas 10.3 and 10.4, and Theorem 10.7. ut

Johnson [146] proved that every finite-dimensional commutative complex
Banach algebra is AMNM as we see in the following theorem.

Theorem 10.9. If the dimension of E is finite, then E is AMNM.

Proof. Let f�ng be a sequence inE� with k L�nk ! 0. Then, by Lemma 10.2, f�ng is
bounded and, thus, has a convergent subsequence f�ni

g with limit  . By continuity
of the function � 7! L�, we see  2 OE [ f0g. Hence, the condition .iii/ of Lemma
10.8 is satisfied with  i D  . ut

A subset J of E is said to be an ideal if

(I1) J is a subspace of E .in the vector space sense/,
(I2) xy 2 J whenever x 2 E and y 2 J .

Johnson [146] provided the following theorem.

Theorem 10.10. Let J be a closed ideal in E .

(i) If J and E=J are AMNM, then so is E .
(ii) If E is AMNM, then so is J .

(iii) IfE is AMNM and J has a bounded approximate identity, thenE=J is AMNM.

Proof. .i/ Let f�ng be a sequence in E� with k L�nk ! 0. Using a subsequence if
necessary, we may assume that either k�njJ k ! 0 or that there exists an 
 > 0 with
k�njJ k > 
 for n 2 N . Consider the second of these cases first. Since k L�njJk �
k L�nk, we note that there are  0

n 2 OJ with k�njJ � 0
nk ! 0. The elements  0

n of OJ
can be extended to elements  n of OE by

 n.x/ D  0
n.xj /= 

0
n.j /

for all x 2 E and j 2 J n Ker 0
n. Let j; k 2 J n Ker 0

n. Then,  0
n.xjk/ D

 0
n.xj / 

0
n.k/ D  0

n.xk/ 
0
n.j /, so that

 0
n.xjk/= 

0
n.jk/ D  0

n.xj /= 
0
n.j / D  0

n.xk/= 
0
n.k/:

Hence, the definition of  n is independent of the choice of j .
By the Hahn–Banach theorem, the functional .�n �  n/jJ can be extended to

an element �n of E� with k�nk D k.�n �  n/jJk, so that k�nk ! 0. Thus,
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by Lemma 10.3, k L#nk ! 0, where #n D �n � �n for n 2 N . Let jn 2 J with
kjnk D 1 and j�n.jn/j > 
. Then, it holds true that

#n.x/ D #n.xjn/=#n.jn/ � L#n.x; jn/=#n.jn/ D  n.x/ � L#n.x; jn/=#n.jn/

for each x 2 E . Thus, .#n� n/.x/ ! 0 uniformly for kxk � 1, i.e., k#n� nk !
0 and hence k�n �  nk ! 0. Now, consider the case where k�njJ k ! 0 and
let �n be an extension of �njJ to E with k�nk D k�njJ k. Put #n D �n � �n.
Then, k L#nk ! 0 by Lemma 10.3 and #n D 0 on J . Hence, we may consider
f#ng as a sequence in E=J . Since E=J is AMNM, there exists a sequence f ng in
bE=J [ f0g � OE [ f0g with k#n �  nk ! 0, and so k�n �  nk ! 0.
.ii/ Suppose that E is AMNM and f�ng is a sequence in J � with k L�nk ! 0 and

k D inf
n

k�nk > 0. Let fjng be a sequence in J with kjnk < 2=k and �n.jn/ D 1

for n 2 N . Put

ˆn.x/ D �n.xjn/

for all x 2 E and n 2 N . Then,ˆn 2 E� and for x; y 2 E

ˆn.xy/ �ˆn.x/ˆn.y/ D �n.xyjn/� �n.xjn/�n.yjn/

D L�n.xjn; yjn/ � L�n.xyjn; jn/;

so L̂
n.x; y/ ! 0 uniformly for kxk; kyk � 1. Thus, there exists a sequence f‰ng

in OE [ f0g with kˆn �‰nk ! 0, and we have k�n � nk ! 0 with  n D ‰njJ 2
OJ [ f0g.
.iii/ Finally, suppose that E is AMNM, J has a bounded approximate identity,

and f�ng is a sequence in .E=J /� � E� with k L�nk ! 0. Then, there is a sequence
f ng in OE [ f0g with k�n �  nk ! 0. By Lemma 10.4 .ii/ with E replaced by J
and taking the limit as ı ! 0, we have either k njJ k � 1=K or k njJ k D 0. As
k njJk ! 0, we get  njJ D 0 eventually. Hence,  n is a multiplicative element of
.E=J /�. ut

B. E. Johnson [146] proved the following:

Corollary 10.11. Let J be a closed ideal inE for whichE=J is finite-dimensional.
Then E is AMNM if and only if J is.

Proof. By Theorem 10.9, E=J is AMNM and the corollary follows from Theorem
10.10 .i/ and .ii/. ut

A topological vector space X is said to be locally compact if 0 has a neighbor-
hood of which closure is compact. Johnson also presented in the same paper that the
following commutative Banach algebras are AMNM:

(i) C0.X/, where X is a locally compact Hausdorff space;
(ii) `p for p 2 Œ1;1�;
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(iii) L1.G/, where G is a locally compact abelian group;

(iv) the algebra `1.ZC/ of power series
1X

nD0
anzn with

P janj < 1;

(v) the convolution algebra L1.0;1/;
(vi) the disc algebra, i.e., the algebra of the continuous functions on the closed unit

disc in C which are analytic in the interior of the disc.

Now, let us discuss the general case of functions between Banach algebras E1
and E2. We denote the space of bounded linear functions from E1 into E2 by
L.E1; E2/. For T 2 L.E1; E2/, let us define

LT .x; y/ D T .xy/� T .x/T .y/

for all x; y 2 E1.
.E1; E2/ is said to be an AMNM pair (almost multiplicative maps are near mul-

tiplicative maps) if for each " > 0 and K > 0 there is a ı > 0 such that if
T 2 L.E1; E2/ with kT k � K and k LT k � ı, then there exists a multiplicative
function T 0 2 L.E1; E2/ with kT � T 0k � ".

The main theorem of Johnson [147] states that ifE1 is amenable andE2 is a dual
space, then the pair .E1; E2/ is AMNM. He also proved that the following pairs are
AMNM:

(i) E1 is a finite-dimensional semi-simple algebra and E2 is a Banach algebra;
(ii) E1 D `1.ZC/ or E1 D disc algebra and E2 D C.X/, where X is a compact

Hausdorff space;
(iii) E1 D E2 D algebra of all bounded linear functions on a separable Hilbert

space.

10.4 Functional Equation f .xy/ D f .x/y

In Section 9.4, the functional equation f .xy/ D f .x/y was introduced as a varia-
tion of the exponential functional equation f .x C y/ D f .x/f .y/. Similarly, the
functional equation

f .xy/ D f .x/y (10.3)

may be regarded as a multiplicative functional equation.
In the following theorem, the functional equation (10.3) will be solved in the

class of functions f W .0;1/ ! R (see [171]).

Theorem 10.12. A function f W .0;1/ ! R satisfies the functional equation
(10.3) for all x; y > 0 if and only if there exist real numbers c and d such that
f has one of the following eight forms:

(i) f .x/ D xc for 0 < x < 1, and f .x/ D 0 for x � 1;
(ii) f .x/ D xc for 0 < x < 1, f .1/ D 0, and f .x/ D xd for x > 1;
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(iii) f .x/ D xc for 0 < x � 1, and f .x/ D 0 for x > 1;
(iv) f .x/ D xc for 0 < x � 1, and f .x/ D xd for x > 1;
(v) f .x/ D 0 for x > 0;

(vi) f .x/ D 0 for 0 < x � 1, and f .x/ D xd for x > 1;
(vii) f .x/ D 0 for x ¤ 1, and f .1/ D 1;

(viii) f .x/ D 0 for 0 < x < 1, and f .x/ D xd for x � 1.

Proof. First, let f satisfy the functional equation (10.3) for all x; y > 0. By putting
x D 1 in (10.3) we immediately obtain f .1/ D 0 or f .1/ D 1. Assume that there
exist some p; q > 0 with p D q2 and f .p/ < 0. Then, it follows from (10.3) that
0 � f .q/2 D f .q2/ D f .p/ < 0 which leads to a contradiction. Hence, f .x/ � 0

holds true for all x > 0.
Assume that there exists some 0 < a < 1 such that f .a/ > 0. Put s D ay for

y > 0. It then follows from (10.3) that f .s/ D f .a/y D sloga f.a/ for 0 < s < 1,
since

˚
ay j y > 0

� D .0; 1/. If we put c D loga f .a/, then f .x/ D xc for all
0 < x < 1.

Assume now that there exists some b > 1 such that f .b/ > 0. Similarly, we
obtain f .s/ D slogb f.b/ for s > 1. Using the notation d D logb f .b/ yields f .x/ D
xd for x > 1.

Cumulatively, f has one of the eight forms .i/ to .viii/.
Finally, it is easy to observe that if f has one of the given eight forms, then it

satisfies the functional equation (10.3) for all x; y > 0. ut
The functional equation (10.3) is different from the multiplicative functional

equation f .xy/ D f .x/f .y/. If we define a function f W .0;1/ ! R by

f .x/ D
�
x .for 0 < x � 1/;

x2 .for x > 1/;

then f does not satisfy the equation f .xy/ D f .x/f .y/, whereas it is a solution
of equation (10.3) according to Theorem 10.12 .iv/.

Similarly, we can prove the following corollary. Hence, we omit the proof (or
see [171]).

Corollary 10.13. A function f W .0;1/ ! R satisfies the functional equation
(10.3) for all x > 0 and y 2 R if and only if there exists a real number c such that
f .x/ D xc for all x > 0.

The group structure of the range space of the exponential functional equation
f .x C y/ D f .x/f .y/ was taken into account, and the stability in the sense of R.
Ger was introduced in Section 9.2.

It is interesting to note that we still have a superstability phenomenon for the
functional equation (10.3) even though the relevant inequality is established in the
spirit of R. Ger, whereas the exponential equation f .x C y/ D f .x/f .y/ is stable
in the similar setting.

Jung [171] provided the following theorem.
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Theorem 10.14. Suppose ı1 and ı2 are given with 0 � ı1 < 1 and ı2 � 0. Let a
function f W .0;1/ ! .0;1/ satisfy the inequalities

1� ı1 � f .xy/

f .x/y
� 1C ı2 (10.4)

for all x; y > 0. Then there exist real numbers c and d such that

f .x/ D
�
xc .for 0 < x � 1/;

xd .for x > 1/:

Proof. Let x > 0 be given. From (10.4) it follows that

.1 � ı1/
m=n � f

�
.xm/n=m

�m=n

f .xm/
� .1C ı2/

m=n .a/

for all m; n 2 N . Let m; n 2 N satisfy n � m. By .a/, we have

ˇ
ˇ.1=n/ lnf .xn/� .1=m/ lnf .xm/

ˇ
ˇ

D .1=m/
ˇ
ˇ.m=n/ lnf

�
.xm/n=m

� � ln f .xm/
ˇ
ˇ

D .1=m/

ˇ
ˇ̌
ˇ
ˇ
ln
f
�
.xm/n=m

�m=n

f .xm/

ˇ
ˇ̌
ˇ
ˇ

! 0 as m ! 1:

Thus, f.1=n/ lnf .xn/g is a Cauchy sequence, and we may define

L.x/ D lim
n!1.1=n/ lnf .xn/

and

F.x/ D exp
�
L.x/

�

for all x > 0. Indeed, it holds true that

F.x/ D lim
n!1f .xn/1=n: .b/

Substituting xn for x in (10.4) yields

1 � ı1 � f .xny/

f .xn/y
� 1C ı2
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and hence

.1 � ı1/
1=n � f .xny/1=n

f .xn/y=n
� �

1C ı2
�1=n

:

Therefore,

lim
n!1f .xny/1=nf .xn/�y=n D 1: .c/

From .b/ and .c/, it follows that

F.xy/ D lim
n!1f .xyn/1=n D lim

n!1f .xyn/1=nf .xn/�y=nf .xn/y=n

and

F.xy/ D F.x/y .d/

for all x; y > 0. Obviously, (10.4) and .b/ imply F.x/ D f .x/ for all x > 0. Since
f .x/ > 0 holds true for all x > 0, by Theorem 10.12 .iv/, there are real numbers c
and d such that f .x/ D xc for 0 < x � 1 and f .x/ D xd for x > 1. ut

Analogously, Jung [171] proved the following corollary.

Corollary 10.15. Assume that a function f W .0;1/ ! .0;1/ satisfies the in-
equality (10.4) for some 0 � ı1 < 1, ı2 � 0 and for all x > 0 and all y 2 R. Then
there exists a real number c such that f .x/ D xc for all x > 0.

Proof. Obviously, we can apply the definition .b/ in the proof of Theorem 10.14 to
the proof of the corollary. As mentioned in the proof of Theorem 10.14, we have
F.x/ D f .x/ > 0 for all x > 0. Hence, for any x > 0 there exist an " > 0 and an
m 2 N such that f .xn/1=n > " for any n � m.

Now, let y < 0 be given. Since the function x 7! xy is continuous on the interval
Œ"=2;1/, the equality .d/ in the proof of Theorem 10.14 is true for y < 0.

Therefore, we can conclude that F satisfies the functional equation (10.3) for
x > 0 and y 2 R. By Corollary 10.13, the assertion is obvious. ut

Now, we study the superstability of the functional equation (10.3) on a restricted
domain (ref. [171]).

Theorem 10.16. Let ı1 and ı2 be given with 0 � ı1 < 1 and ı2 � 0. Given
m > 0, suppose a function f W .0;1/ ! .0;1/ satisfies the inequality (10.4) for
all pairs .x; y/ with x > m or jyj > m. Then there exists a real number c such that
f .x/ D xc for all x > 0.

Proof. Suppose 0 < x � m and �m � y � m. We can choose an n 2 N satisfying
nx > m. Using the equality

f .xy/

f .x/y
D f

�
.nx/y lognx x

�

f .nx/y lognx x
� f .nx/y lognx x

f
�
.nx/lognx x

�y
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and the inequality (10.4) yields

1 � ı1

.1C ı2/m
� f .xy/

f .x/y
� 1C ı2

.1 � ı1/m for y � 0

or

.1 � ı1/
mC1 � f .xy/

f .x/y
� .1C ı2/

mC1 for y < 0:

In both cases we can find some ı3 and ı4 (ı1 � ı3 < 1, ı4 � ı2) such that f
satisfies the inequality

1� ı3 � f .xy/

f .x/y
� 1C ı4 .a/

for any pair .x; y/ with 0 < x � m and jyj � m. Hence, f satisfies the inequality
.a/ for all x > 0 and y 2 R. Therefore, the assertion of our theorem is an immediate
consequence of Corollary 10.15. ut

Using the result of Theorem 10.16, we can easily obtain an interesting relation-
ship between the power functions and the asymptotic behavior of the equation (10.3)
as we observe in the following corollary:

Corollary 10.17. Let f W .0;1/ ! .0;1/ be a function. There exists a real num-
ber c such that f .x/ D xc for all x > 0 if and only if f .xy/=f .x/y ! 1 as
jxj C jyj ! 1.

10.5 Functional Equation f .x C y/ D f .x/f .y/f .1=x C 1=y/

K. J. Heuvers introduced in his paper [132] a new type of logarithmic functional
equation

f .x C y/ D f .x/C f .y/C f .1=x C 1=y/

and proved that this equation is equivalent to the “original” logarithmic equation
f .xy/ D f .x/C f .y/ in the class of functions f W .0;1/ ! R.

If we slightly modify the functional equation of Heuvers, we may obtain a new
functional equation

f .x C y/ D f .x/f .y/f .1=x C 1=y/; (10.5)

which we may call a multiplicative functional equation because the function f .x/ D
xa is a solution of this equation.

By using the theorem of Heuvers (see Theorem 11.9 or [132]), we can easily
prove that if both the domain and range of relevant functions are positive real num-
bers, then the functional equation (10.5) is equivalent to the “original” multiplicative
equation f .xy/ D f .x/f .y/.
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By modifying an idea of Heuvers, S.-M. Jung [175] proved that the functional
equation (10.5) and the equation f .xy/ D f .x/f .y/ are equivalent to each other
in the class of functions f W Rnf0g ! R. Moreover, he also investigated a stability
problem of the functional equation (10.5) in the sense of Ger. We will now introduce
his results.

Every solution of the “original” multiplicative (logarithmic) functional equation
is called a multiplicative (logarithmic) function. For more information on multi-
plicative functions or logarithmic functions, one can refer to [3].

First, we will introduce a lemma essential to prove Theorems 10.21 and 10.23
which are the main theorems of this section. The proof of the following lemma is
elementary.

Lemma 10.18. It holds true that

˚
.u; v/ j u D x�1 C y�1; v D 1 � x.x C y/�1y�1;

x; y 2 Rnf0g with x C y ¤ 0
�

	 ˚
.u; v/ j u 2 Rnf0g; v 2 R with u C v ¤ 1 and u.1� v/ > 0

�
:

Proof. Let us consider the system of equations

�
x�1 C y�1 D u;
x.x C y/�1y�1 D 1 � v

.a/

with variables x and y, where u 2 Rnf0g and v 2 R with uCv ¤ 1 and u.1�v/ > 0.
It suffices to prove that the system has at least one solution .x; y/ with x; y; xCy 2
Rnf0g.

Combining both equations in the system yields a quadratic equation

�
u2 � u C uv

�
x2 � 2ux C 1 D 0:

Applying the quadratic formula, we find the solutions of the above equation:

x D u ˙p
u.1 � v/

u.u C v � 1/
¤ 0 and y D ˙ 1

p
u.1 � v/

¤ 0:

Moreover, we see by the first equation of the system .a/ that x C y ¤ 0 because of
u 2 Rnf0g. ut

We will verify in the following lemma that if a function f W R ! R is a solution
of the functional equation (10.5) and f .x/ D 0 for some x 2 Rnf0g, then f is a
null function.

Lemma 10.19. If a function f W R ! R satisfies the equation (10.5) for all x; y 2
Rnf0g and if there is an x0 ¤ 0 with f .x0/ D 0, then f .x/ D 0 for any x 2 R.
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Proof. Put x D x0 in (10.5) to obtain

f .x0 C y/ D f .x0/f .y/f .1=x0 C 1=y/ D 0

for each y 2 Rnf0g. ut
Two sets of solutions of the functional equation (10.5) with f .1/ D 1 resp.

f .1/ D �1 are equivalent to each other. In particular, we introduce the following
lemma whose proof is trivial.

Lemma 10.20. If a function f W R ! R is a solution of the functional equation
(10.5) for all x; y 2 Rn f0g and if f .1/ D �1, then the function g W R ! R
defined by g.x/ D �f .x/ is also a solution of the functional equation (10.5) for
any x; y 2 Rnf0g with g.1/ D 1.

In the following theorem, we will prove that the multiplicative equation (10.5)
is equivalent to the “original” one, f .xy/ D f .x/f .y/, in the class of functions
f W R ! R.

Theorem 10.21 (Jung). A function f W R ! R satisfies the functional equation
(10.5) for every x; y 2 Rnf0g if and only if there exist a constant � 2 f�1; 1g and a
multiplicative functionm W R ! R .i.e.,m.xy/ D m.x/m.y/ for all x; y 2 Rnf0g/
such that f .x/ D �m.x/ for all x 2 Rnf0g.

Proof. If there exists an x0 ¤ 0 with f .x0/ D 0, then Lemma 10.19 implies that
f .x/ D 0 for every x 2 R. In this case, we may choose � D 1 and a multiplicative
functionm � 0 such that f .x/ D �m.x/ for all x 2 Rnf0g.

Assume now that f .x/ ¤ 0 for all x 2 Rnf0g. Put y D 1=x in (10.5) to obtain

f .1=x/ D 1=f .x/ .a/

for each x 2 Rnf0g. With x D 1, .a/ implies f .1/ D 1 or f .1/ D �1.
In view of Lemma 10.20, we may without loss of generality assume that

f .1/ D 1: .b/

It follows from .a/ that

f
�
1=.x C y/

�
f .x C y/ D f

�
1=.y C z/

�
f .y C z/ D 1

for x C y; y C z 2 Rnf0g. Hence, by using (10.5), we have

f
�
1=.x C y/C 1=z

�
f .1=x C 1=y/

D f
�
1=.x C y/

�
f .1=z/f .x C y C z/f .1=x/f .1=y/f .x C y/

D f
�
1=.y C z/

�
f .1=x/f .x C y C z/f .1=y/f .1=z/f .y C z/

D f
�
1=.y C z/C 1=x

�
f .1=y C 1=z/ (c)

for all x; y; z 2 Rnf0g with x C y ¤ 0 and y C z ¤ 0.
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If we set

u D 1=x C 1=y and v D 1=.x C y/C 1=z; .d /

then

uv D .1=x C 1=y/
�
1=.x C y/C 1=z

�

D 1=.yz/C 1=.xy/C 1=.xz/

D .1=.y C z//.1=y C 1=z/C .1=x/.1=y C 1=z/

D �
1=.y C z/C 1=x

�
.1=y C 1=z/:

If we additionally set

1=y C 1=z D 1 .e/

in .c/, then .b/, .c/, .d/, and .e/ imply that the function f satisfies

f .uv/ D f .u/f .v/ .f /

for all u 2 Rnf0g, v 2 R with u C v ¤ 1 and u.1 � v/ > 0 (see Lemma 10.18 and
the fact that u D 1=x C 1=y and v D 1=.x C y/C 1=z D 1 � x.x C y/�1y�1 for
some x; y 2 Rnf0g with x C y ¤ 0).

Let ˛ 
 �1:324717956 : : : be a real solution of the cubic equation x3�xC1 D
0; more precisely, let

˛ D � � 1=2C .23=108/1=2
�1=3 C � � 1=2� .23=108/1=2 �1=3:

Using .f / and .a/ yields

f .u/ D f
�
u2=u

� D f
�
u2
�
f .1=u/ D f

�
u2
�ı
f .u/

or

f
�
u2
� D f .u/2 .g/

for any u < 0 (u ¤ ˛) or u > 1 (u ¤ ˛ means u2 C 1=u ¤ 1). Using .a/ and .g/,
we have

f
�
1=u2

� D 1=f
�
u2
� D 1=f .u/2 D f .1=u/2

for u < 0 (u ¤ ˛) or u > 1. Hence, .b/ and .g/ yield that f satisfies .g/ for
all u 2 R n f0g. (The validity of .g/ for u D 1=˛ ¤ ˛ or u � 1 implies that
f
�
1=u2

� D f .1=u/2 for 1=u D ˛ or 0 < 1=u � 1.)
Let s > t � 1 be given. It then follows from .f /, .g/, and .a/ that

f .st/ D f
�
s2t=s

� D f
�
s2
�
f .t=s/ D f .s/2f .t/f .1=s/ D f .s/f .t/ .h/
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for all s � 1 and t � 1. (We may replace each of s and t by the other when t > s � 1

and use .g/ and .b/ to prove .h/ for s D t .) From .a/ and .h/, we get

f
�
.1=s/.1=t/

� D 1=f .st/ D �
1=f .s/

��
1=f .t/

� D f .1=s/f .1=t/;

for all s � 1 and t � 1, or

f .st/ D f .s/f .t/

for all 0 < s; t � 1. For the case when s � 1 and 0 < t < 1 (t � 1 and 0 < s < 1),
we may use .f / to obtain f .st/ D f .s/f .t/. Altogether, we may conclude by
considering .b/ that f satisfies .f / for all pairs .u; v/ of

˚
.u; v/ j u > 0; v > 0

�

[ ˚
.u; v/ j u 2 Rn f0g; v 2 R; u C v ¤ 1; u.1 � v/ > 0

�
: (i)

By .g/, we have f .u/2 D f
�
u2
� D f

�
.�u/2

� D f .�u/2 for all u 2 Rn f0g.
Hence, we get

f .u/ D �f .�u/ or f .u/ D f .�u/ .j /

for each u 2 Rn f0g.
If we assume that f .u/ D f .�u/ for all �1 � u < 0 and that there exists a

u0 < �1 with f .u0/ D �f .�u0/, then it follows from .a/ that

f .1=u0/ D 1=f .u0/ D �1=f .�u0/ D �f .�1=u0/

and �1 < 1=u0 < 0 which are contrary to our assumption. (Due to Lemma 10.19,
we can assume that f .�1=u0/ ¤ 0.)

Now, suppose there exists a u0 (�1 � u0 < 0) with f .u0/ D �f .�u0/. It then
follows from .i/ that

f .u0v/ D f
�
.�u0/.�v/

� D f .�u0/f .�v/ D �f .u0/f .�v/ D �f .�u0v/

for all v < �1 with v ¤ u0 � 1, i.e.,

f .u/ D �f .�u/ .k/

for all u WD u0v > 1 (u ¤ u20 � u0). Using .a/ and .k/ yields

f .u/ D 1=f .1=u/ D �1=f .�1=u/ D �f .�u/

for any 0 < u < 1 .u ¤ .u20 � u0/�1/. From (10.5), .a/, .f /, and .i/ we get

f .x � 1/ D f .x/f .�1/f .1=x � 1/
D f .x/f .�1/f .1 � x/f .1=x/
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D f .�1/f .1 � x/
D �f .�1/f .x � 1/

for 0 < x < 1, which implies that f .�1/ D �1. Therefore,

f .1/ D �f .�1/:

Altogether, we see that if there exists a u0 (�1 � u0 < 0) with f .u0/ D �f .�u0/,
then f satisfies .k/ for all u > 0with possible exceptions at u20�u0 and

�
u20�u0

��1
.

Taking .j / into consideration, assume that

f
�
u20 � u0

� D f
�
u0 � u20

�
:

By .f / and .i/, we have

f
��

u0 � u20
�
v
� D f

��
u20 � u0

�
.�v/

�

D f
�
u20 � u0

�
f .�v/

D f
�
u0 � u20

�
f .�v/

D f
� � �

u0 � u20
�
v
�

for all v < �1 with v ¤ u0 � u20 � 1, i.e.,

f .u/ D f .�u/

for each u WD �
u0 � u20

�
v > u20 � u0 with u ¤ �

u0 � u20
��

u0 � u20 � 1
�
, which

is contrary to the fact that .k/ holds true for all u > 0 with possible exceptions at
two points. (In view of Lemma 10.19, we may exclude the case when f .u/ D 0 for
some u ¤ 0.)

Similarly, if we assume

f
�
1
ı�

u20 � u0
�� D f

�
1
ı�

u0 � u20
��
;

then this assumption also leads to a contradiction. Hence, we can conclude that if
there exists a u0 (�1 � u0 < 0) with f .u0/ D �f .�u0/, then

f .u/ D �f .�u/

for all u > 0. If we replace �u with u, we will see that this equation is true also for
all u < 0.

Therefore, f satisfies either

f .u/ D �f .�u/ for all u < 0
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or

f .u/ D f .�u/ for all u < 0:

This fact together with .f / and .i/ yields

f .uv/ D f .u/f .v/

for all u; v 2 Rnf0g.
The proof of the reverse assertion is clear. ut
If a function f W R ! R is a solution of the functional equation (10.5) for all

x; y 2 Rnf0g and additionally satisfies f .0/ ¤ 0, then we see by putting y D �x
in (10.5) and considering .j / in the proof of Theorem 10.21 that f .x/ 2 f�1; 1g
for all x 2 Rnf0g. Therefore, we have the following:

Corollary 10.22. An unbounded function f W R ! R is a solution of the functional
equation (10.5) for all x; y 2 Rnf0g if and only if there exist a constant � 2 f�1; 1g
and an unbounded multiplicative function m W R ! R such that f .x/ D �m.x/

for all x 2 R.

In the following theorem, we will prove the stability of the functional equation
(10.5) in the sense of Ger.

Theorem 10.23 (Jung). If a function f W R ! .0;1/ satisfies the inequality

ˇ̌
ˇ
ˇ

f .x C y/

f .x/f .y/f .1=x C 1=y/
� 1

ˇ̌
ˇ
ˇ � ı (10.6)

for some 0 � ı < 1 and for all x; y 2 Rnf0g, then there exists a unique multiplica-
tive functionm W Rnf0g ! .0;1/ such that

	
1 � ı

1C ı


13=2
� m.x/

f .x/
�
	
1C ı

1 � ı


13=2

for any x 2 Rnf0g. If f is additionally assumed to be unbounded, then the domain
of m can be extended to the whole real space R with m.0/ D 0.

Proof. It follows from (10.6) that

.1C ı/�1 � f .x/f .y/f .1=x C 1=y/

f .x C y/
� .1 � ı/�1 .a/

for any x; y 2 Rnf0g. Putting y D 1=x in .a/ yields

.1C ı/�1 � f .x/f .1=x/ � .1 � ı/�1 .b/
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for each x 2 Rnf0g. With x D 1, .b/ yields

.1C ı/�1=2 � f .1/ � .1 � ı/�1=2: .c/

From (10.6) we get

.1 � ı/2

� f
�
1=.x C y/C 1=z

�
f .1=x C 1=y/

f
�
1=.x C y/

�
f .1=z/f .x C y C z/f .1=x/f .1=y/f .x C y/

� .1C ı/2 (d)

and

.1 � ı/2

� f
�
1=.y C z/C 1=x

�
f .1=y C 1=z/

f
�
1=.y C z/

�
f .1=x/f .x C y C z/f .1=y/f .1=z/f .y C z/

� .1C ı/2 (e)

for all x; y; z 2 Rnf0g with xCy ¤ 0 resp. yC z ¤ 0. If we divide the inequalities
in .d/ by those in .e/ and consider .b/, then

	
1 � ı
1C ı


3
� f

�
1=.x C y/C 1=z

�
f .1=x C 1=y/

f
�
1=.y C z/C 1=x

�
f .1=y C 1=z/

�
	
1C ı

1 � ı

3

.f /

for all x; y; z 2 Rnf0g with x C y ¤ 0 and y C z ¤ 0.
If we define u and v by .d/ in the proof of Theorem 10.21, then we have

uv D �
1=.y C z/C 1=x

�
.1=y C 1=z/

as we see in the proof of Theorem 10.21. If an additional condition .e/ in the proof
of Theorem 10.21 is also assumed, then .d/ and .e/ in the proof of Theorem 10.21,
together with .c/ and .f /, imply that

	
1 � ı
1C ı


7=2
� f .u/f .v/

f .uv/
�
	
1C ı

1 � ı

7=2

.g/

for all u 2 Rnf0g, v 2 R with u C v ¤ 1 and u.1 � v/ > 0 (see Lemma 10.18 and
the fact that u D 1=x C 1=y and v D 1=.x C y/C 1=z D 1 � x.x C y/�1y�1 for
some x; y 2 Rnf0g with x C y ¤ 0).

Let us define ˛ 
 �1:324717956 : : : as in the proof of Theorem 10.21. From the
relation

f
�
u2
�

f .u/2
D f

�
u2
�
f .1=u/

f .u/

1

f .u/f .1=u/
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and from .g/ and .b/, it follows that

	
1 � ı

1C ı


9=2
� f

�
u2
�

f .u/2
�
	
1C ı

1� ı


9=2
.h/

for any u < 0 (u ¤ ˛) or u > 1 .u ¤ ˛ implies u2 C 1=u ¤ 1/. On account of .b/
and .h/, we obtain

	
1 � ı

1C ı


13=2
� f

�
1=u2

�

f .1=u/2
D f

�
u2
�
f
�
1=u2

�

f .u/2f .1=u/2
f .u/2

f
�
u2
� �

	
1C ı

1� ı


13=2

for u < 0 (u ¤ ˛) or u > 1. This fact together with .h/ and .c/ yields that

	
1 � ı

1C ı


13=2
� f

�
u2
�

f .u/2
�
	
1C ı

1� ı


13=2
.i/

for all u 2 Rnf0g, since 1=˛ ¤ ˛.
Let s > t � 1. With

f .s/f .t/

f .st/
D f

�
s2
�
f .t=s/

f
�
s2 � t=s�

f .t/f .1=s/

f .t=s/

f .s/2

f
�
s2
�

1

f .s/f .1=s/
;

.g/, .h/, .b/, and .c/ yield

	
1 � ı

1C ı


25=2
� f .s/f .t/

f .st/
�
	
1C ı

1� ı


25=2
.j /

for all s � 1 and t � 1. (We can replace each of s and t with the other when
t > s � 1 and we apply .i/ to the proof of .j / for the case s D t .) By

f .1=s/f .1=t/

f
�
1=.st/

� D f .s/f .1=s/f .t/f .1=t/
f .st/

f .s/f .t/

1

f .st/f
�
1=.st/

� ;

and using .b/ and .j / we obtain

	
1 � ı
1C ı


29=2
� f .1=s/f .1=t/

f
�
1=.st/

� �
	
1C ı

1 � ı

29=2

.k/

for all s � 1 and t � 1. Hence, by .g/, .j /, and .k/ we conclude that

	
1 � ı
1C ı


29=2
� f .u/f .v/

f .uv/
�
	
1C ı

1 � ı

29=2

.l/
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for each pair .u; v/ of

˚
.u; v/ j u > 0; v > 0

�

[ ˚
.u; v/ j u 2 Rn f0g; v 2 R; u C v ¤ 1; u.1 � v/ > 0

�
:

.m/

(We can use .g/ to verify inequalities in .l/ either for s � 1 and 0 < t < 1 or for
t � 1 and 0 < s < 1.)

The fact
f .u/2

f .�u/2
D f .u/2

f
�
u2
�
f
�
.�u/2

�

f .�u/2

together with .i/ implies that

	
1 � ı
1C ı


13=2
� f .u/

f .�u/
�
	
1C ı

1 � ı

13=2

for every u 2 Rnf0g. This fact, .l/, and .m/ together with the relations

f .u/f .v/

f .uv/
D f .�u/f .�v/

f .uv/

f .u/

f .�u/

f .v/

f .�v/
(for u; v < 0/

and
f .u/f .v/

f .uv/
D f .u/f .�v/

f .�uv/

f .�uv/

f .uv/

f .v/

f .�v/
(for u > 0; v < 0/

imply
	
1 � ı
1C ı


55=2
� f .uv/

f .u/f .v/
�
	
1C ı

1 � ı

55=2

.n/

for any u; v 2 Rnf0g.
We now claim that

ı1C2C			C2n�1

1 � f
�
u2

n�

f .u/2n � ı1C2C			C2n�1

2 .o/

for all u 2 Rnf0g and n 2 N , where we put

ı1 D
	
1 � ı
1C ı


13=2
and ı2 D

	
1C ı

1 � ı

13=2

:

Due to .i/ our assertion is obvious for n D 1. Assume that .o/ is true for some
n � 1. Then, the relation

f
�
u2

nC1�

f .u/2nC1
D f

��
u2

n�2�

f
�
u2n

�2

 
f
�
u2

n�

f .u/2n

!2
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together with .i/ and .o/ gives

ı1C2C			C2n

1 � f
�
u2

nC1�

f .u/2nC1
� ı1C2C			C2n

2

which proves the validity of .o/ for all u 2 Rnf0g and n 2 N .
Let us define functions gn W Rnf0g ! R by

gn.u/ D 2�n lnf
�
u2

n�

for each u 2 Rnf0g and n 2 N . Let m; n 2 N be arbitrarily given with n > m. It
then follows from .o/ that

jgn.u/� gm.u/j D 2�m
ˇ
ˇ̌
ˇ
ˇ
ˇ
2�.n�m/ ln

f
��

u2
m�2n�m

�

f
�
u2m

�2n�m

ˇ
ˇ̌
ˇ
ˇ
ˇ

! 0 as m ! 1:

Hence, fgn.u/g is a Cauchy sequence for every fixed u 2 Rnf0g. Therefore, we can
define functions ` W Rnf0g ! R and m W Rnf0g ! .0;1/ by

`.u/ D lim
n!1gn.u/ and m.u/ D e`.u/:

Indeed, we know that

m.u/ D lim
n!1f

�
u2

n�2�n

for every u 2 Rnf0g.
Replace u and v in .n/ with u2

n
and v2

n
, respectively, and extract the 2nth root

of the resulting inequalities and then take the limit as n ! 1 to obtain

m.uv/ D m.u/m.v/

for all u; v 2 Rnf0g. Hence, we conclude by considering .o/ that there exists a
multiplicative functionm W Rnf0g ! .0;1/ with

ı1 � m.u/

f .u/
� ı2 .p/

for any u 2 Rnf0g.
Suppose m0 W Rnf0g ! .0;1/ is another multiplicative function satisfying .p/

instead of m. Since m and m0 are multiplicative, we see that

m
�
u2

n� D m.u/2
n

and m0�u2n� D m0.u/2n

:
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Thus, it follows from .p/ that

m.u/

m0.u/
D
 
m
�
u2

n�

f
�
u2n

�

!2�n 
f
�
u2

n�

m0�u2n
�

!2�n

! 1 as n ! 1;

which implies the uniqueness of m.
By .p/ we see thatm is unbounded if and only if f is so. Hence, it is not difficult

to show that if f is unbounded, then the domain of m can be extended to the whole
real space R by definingm.0/ D 0. ut
Corollary 10.24. If a function f W R ! .�1; 0/ satisfies the functional inequality
(10.6) for some 0 � ı < 1 and for all x; y 2 Rnf0g, then there exists a unique
multiplicative functionm W Rnf0g ! .0;1/ with

�
	
1C ı

1� ı


13=2
� m.x/

f .x/
� �

	
1 � ı

1C ı


13=2

for each x 2 Rnf0g. Moreover, if f is unbounded, then the domain of m can be
extended to the whole real space R with m.0/ D 0.



Chapter 11
Logarithmic Functional Equations

It is not difficult to demonstrate the Hyers–Ulam stability of the logarithmic
functional equation f .xy/ D f .x/Cf .y/ for functions f W .0;1/ ! E , whereE
is a Banach space. More precisely, if a function f W .0;1/ ! E satisfies the func-
tional inequality kf .xy/ � f .x/ � f .y/k � ı for some ı > 0 and for all x; y > 0,
then there exists a unique logarithmic function L W .0;1/ ! E (this means that
L.xy/ D L.x/CL.y/ for all x; y > 0) such that kf .x/�L.x/k � ı for any x > 0.
In this chapter, we will introduce a new functional equation f .xy/ D yf .x/ which
has the logarithmic property in the sense that the logarithmic function f .x/ D lnx
.x > 0/ is a solution of the equation. Moreover, the functional equation of Heuvers
f .x C y/ D f .x/C f .y/C f .1=x C 1=y/ will be discussed.

11.1 Functional Equation f .xy/ D yf .x/

The general solution f W Rnf0g ! R of the logarithmic functional equation

f .xy/ D f .x/C f .y/ (11.1)

is given by

f .x/ D A
�

ln jxj� for x 2 Rnf0g;
where A W R ! R is an additive function. If a continuous function f W Rnf0g ! R
satisfies the logarithmic equation (11.1), then there exists a real constant c such that
f .x/ D c ln jxj for all x 2 Rnf0g.

The logarithmic function f .x/ D lnx .x > 0/ clearly satisfies the functional
equation

f .xy/ D yf .x/: (11.2)

Therefore, we may regard the functional equation (11.2) as a sort of logarithmic
functional equation.

S.-M. Jung [158] solved the functional equation (11.2) in the class of differen-
tiable functions f W .0;1/ ! R as we will indicate in the following theorem.

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 11, c� Springer Science+Business Media, LLC 2011
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Theorem 11.1. A differentiable function f W .0;1/ ! R satisfies the functional
equation (11.2) for all x > 0 and y 2 R if and only if f .x/ D c lnx for any x > 0,
where c is an arbitrary real constant.

Proof. Let f W .0;1/ ! R be a differentiable function and satisfy the functional
equation (11.2) for all x > 0 and y 2 R. Obviously, putting x D 1 in (11.2) yields
f .1/ D 0.

Assume that there exists some x0 > 0 (x0 ¤ 1) such that f .x0/ D 0. Then, the
fact

˚
x
y
0 j � 1 < y < 1� D .0;1/, together with (11.2), yields f .x/ D 0 for all

x > 0.
Assume now that f .x/ ¤ 0 for all x > 0 (x ¤ 1). Differentiations of (11.2) with

respect to x and y yield f 0.xy/ D x1�yf 0.x/ and f 0.xy/ D x�y.lnx/�1f .x/, re-
spectively. Since f .x/ ¤ 0 for all x ¤ 1, it follows from the last two equations that

f 0.x/
f .x/

D 1

x lnx

for any x > 0 (x ¤ 1). By integrating both sides of the last equation, we obtain

jf .x/j D
�
a1j lnxj .for 0 < x < 1/;
a2j lnxj .for x > 1/;

where a1 and a2 are positive real constants. The continuity of f implies that

f .x/ D
�
c1 lnx .for 0 < x � 1/;

c2 lnx .for x > 1/;

where c1; c2 ¤ 0 are arbitrary real constants. However, the differentiability of f at
x D 1 implies c1 D c2. Hence, it must hold true

f .x/ D c1 ln x;

for all x > 0, where c1 ¤ 0 is an arbitrary real constant. Therefore, we have
f .x/ D c lnx .x > 0/ where c is an arbitrary (including 0) real constant.

The reverse assertion of our theorem is trivial. ut
Analogously as in the proof of Theorem 11.1, we can also prove that a differ-

entiable function f W .0;1/ ! R satisfies the functional equation (11.2) for all
x; y > 0 if and only if f .x/ D c lnx (x > 0), where c is an arbitrary real constant.

11.2 Superstability of Equation f .xy/ D yf .x/

It is obvious that the logarithmic functional equation f .xy/ D f .x/Cf .y/ is stable
in the sense of Hyers and Ulam. We now prove the superstability of the functional
equation (11.2) in the conventional setting (11.3) (see [158]).



11.2 Superstability of Equation f .xy/ D yf .x/ 255

Theorem 11.2. If a function f W .0;1/ ! C satisfies the functional inequality

jf .xy/� yf .x/j � ı (11.3)

for some ı � 0 and for all x > 0 and y 2 R, then either f is identically zero or it
satisfies the functional equation (11.2) for all x > 0 and y 2 R.

Proof. By taking x D 1 and letting y ! 1 in (11.3), we get f .1/ D 0. First,
assume there exists an x0 > 0 .x0 ¤ 1/ such that f .x0/ D 0. Then the fact˚
x
y
0 j � 1 < y < 1� D .0;1/ and (11.3) imply that jf .x/j � ı for any x > 0;

and this, together with (11.3) again, implies that f is identically zero.
Assume now that f .x/ ¤ 0 for any x > 0 (x ¤ 1). Let z > 1 be fixed and

suppose x > 0. We use induction on n to prove the inequality

ˇ̌
z�nf

�
xzn� � f .x/

ˇ̌ � ı

nX

iD1
z�i .a/

for all n 2 N . The validity of .a/ for n D 1 follows immediately from (11.3). Now,
assume .a/ holds true for some integer n > 0. It then follows from (11.3) and .a/
that

ˇ
ˇz�.nC1/f

�
xznC1� � f .x/ˇˇ � z�.nC1/ˇˇf

�
xznC1� � zf

�
xzn�ˇˇ

C ˇ
ˇz�nf

�
xzn� � f .x/

ˇ
ˇ

� ı

nC1X

iD1
z�i ;

which ends the proof of .a/.
Let m; n 2 N satisfy n � m. Using .a/ yields

ˇ̌
z�nf

�
xzn� � z�mf

�
xzm�ˇ̌ D z�m ˇ̌z�.n�m/f

�
.xzm

/z
n�m� � f

�
xzm�ˇ̌

� ı

zm.z � 1/

! 0 as m ! 1:

Hence, fz�nf .xzn
/g is a Cauchy sequence, and we can define

Lz.x/ D lim
n!1 z�nf

�
xzn�

for all x > 0.
Now, let x > 0 be given with x ¤ 1. If we put y D zn, let n ! 1 in (11.3), and

then take into account f .x/ ¤ 0, we easily see

lim
n!1

ˇ
ˇf
�
xzn�ˇˇ D 1: .b/
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Let y ¤ 0 be given. Substituting xzn

for x in (11.3), dividing by jyf .xzn

/j both
sides, and letting n ! 1, together with .b/ yield

lim
n!1f

�
xyzn�

y�1f
�
xzn��1 D 1:

Therefore, we have

Lz.x
y/ D lim

n!1 z�nf
�
xyzn� D lim

n!1 z�nf
�
xyzn�

y�1f
�
xzn��1

yf
�
xzn�

and hence

Lz.x
y/ D yLz.x/ .c/

for any x > 0 (x ¤ 1) and for all y ¤ 0. Moreover, it follows from .a/ that

jLz.x/ � f .x/j � ı

z � 1 .d/

for all x > 0.
Furthermore, let L W .0;1/ ! C be another function satisfying .c/ and .d/.

Substituting yn for y in .c/ yields

Lz
�
xy

n � D ynLz.x/ and L
�
xy

n� D ynL.x/ .e/

for all x > 0 (x ¤ 1) and for any y ¤ 0. Let y > 1 be fixed in .e/. Then,
considering .d/ and .e/ we get

jLz.x/ � L.x/j D y�nˇˇLz
�
xy

n� � L
�
xy

n�ˇˇ

� y�nˇˇLz
�
xy

n� � f
�
xy

n �ˇˇC y�nˇˇf
�
xy

n � �L�xyn �ˇˇ

� y�n 2ı

z � 1
for all n 2 N . That is, Lz.x/ D L.x/ for all x > 0 (x ¤ 1). This implies that if
z0 > z > 1; then

Lz.x/ D Lz0.x/ .f /

for all x > 0 (x ¤ 1) because Lz0 satisfies .c/ and .d/.
By letting z ! 1 in .d/ and by .c/ and .f /, we conclude that f itself satisfies

the functional equation (11.2) for all x > 0 .x ¤ 1/ and for any y ¤ 0. Now, if
x D 1, then f .1/ D 0. Hence,

0 D f .1/ D f .xy/ D yf .x/
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for all y 2 R. Analogously, if y D 0; then

0 D f .1/ D f .xy/ D yf .x/;

for all x > 0, which ends the proof. ut
It is assumed in Theorem 11.2 that the inequality (11.3) holds true for all x > 0

and y 2 R. Can we also expect the superstability of the functional equation (11.2)
in somewhat restricted variables? Similarly as in the proof of Theorem 11.2, we can
prove the following theorems. Hence, we omit the proofs.

Theorem 11.3. Assume f W .0;1/ ! C satisfies the inequality (11.3) for some
ı � 0 and for all x; y > 0. Then we have the following possibilities:

(i) f is identically zero;
(ii) f is identically zero on .0; 1/ and satisfies the equation (11.2) for x � 1 and

y > 0;
(iii) f is identically zero on .1;1/ and satisfies the equation (11.2) for x 2 .0; 1�

and y > 0;
(iv) f satisfies the equation (11.2) for x; y > 0.

For the particular case of D D ˚
x 2 .0;1/ j f .x/ ¤ 0

� D .0;1/nf1g in
Theorem 11.3, Jung [158] obtained the following result.

Corollary 11.4. Let a function f W .0;1/ ! C satisfy the inequality (11.3) for
some ı � 0 and for all x; y > 0. IfD D .0;1/nf1g, then f satisfies the functional
equation (11.2) for all x; y > 0.

Jung [158] also obtained the following:

Theorem 11.5. Let a function f W .0;1/ ! C satisfy the inequality (11.3) for
some ı � 0 and for all x; y > 1. If there exists an " > 0 such that

inf
x�1C" jf .x/j > 0; (11.4)

then f satisfies the functional equation (11.2) for any x; y > 1.

By using the result of Theorem 11.5, we can prove the following corollary
(ref. [158]).

Corollary 11.6. Let d > 2 be fixed and let a function f W .0;1/ ! C satisfy the
inequality (11.3) for some ı � 0 and for all x; y > 0 with x C y � d . If (11.4)
holds true for some " > 0, then f itself satisfies the functional equation (11.2) for
all x; y > 1.

Proof. Let x; y > 1 satisfy the condition x C y < d . Choose a number z > 1 with
zx � d . It then follows from (11.3) that
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jf .xy/� yf .x/j �
ˇ̌
ˇ
ˇf .x

y/� y lnx

ln zx
f .zx/

ˇ̌
ˇ
ˇC y

ˇ̌
ˇ
ˇ

ln x

ln zx
f .zx/ � f .x/

ˇ̌
ˇ
ˇ

� ı.1C y/

< ıd;

since
y lnx

ln zx
> 0;

lnx

ln zx
> 0;

y lnx

ln zx
C zx > d;

lnx

ln zx
C zx > d:

Our hypothesis implies that f satisfies

jf .xy/� yf .x/j < ıd

for all x; y > 1. Hence, by Theorem 11.5, f satisfies the functional equation (11.2)
for all x; y > 1. ut

The assertion in Corollary 11.6 is also true under a weakened condition (11.5)
instead of (11.3) as mentioned in the following corollary (cf. [158]).

Corollary 11.7. Let f W .0;1/ ! C be a function. Assume that (11.4) holds true
for some " > 0. If

lim
n!1 sup

xCy�n
jf .xy/� yf .x/j < 1; (11.5)

then f satisfies the functional equation (11.2) for all x; y > 1.

Proof. According to (11.5), there is an M > 0 such that

lim
n!1 sup

xCy�n
jf .xy/ � yf .x/j < M;

and hence, we can choose an n0 such that

sup
xCy�n0

jf .xy/� yf .x/j < 2M: .a/

Corollary 11.6, together with .a/, implies that f satisfies the functional equation
(11.2) for all x; y > 1. ut

We will now prove the superstability of the functional equation (11.2) in the sense
of Ger. First of all, let ı be given with 0 < ı < 1; and define

˛n.x; y/ D
nY

iD1

�
1 � ıx�yi �

; ˇn.x; y/ D
nY

iD1

�
1C ıx�yi �
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and

˛.x; y/ D lim
n!1˛n.x; y/; ˇ.x; y/ D lim

n!1ˇn.x; y/

for any x > 1 and y � 2. It is not difficult to demonstrate that ˛.x; y/ > 0 for any
x > 1 and y � 2.

Jung [158] provided the following theorem.

Theorem 11.8. If a function f W .0;1/ ! .0;1/ satisfies the inequality

ˇ
ˇ
ˇ̌f .x

y/

yf .x/
� 1

ˇ
ˇ
ˇ̌ � ıx�y (11.6)

for all x; y > 0 and for some 0 < ı < 1, then f satisfies the functional equation
(11.2) for all x > 1 and y > 0.

Proof. Let x .> 1/ and y .� 2/ be fixed. We use induction on n to prove

˛n.x; y/ � f
�
xy

n�

ynf .x/
� ˇn.x; y/: .a/

The inequality .a/ for n D 1 is an immediate consequence of (11.6). Assume now
that .a/ is true for some integer n > 0. Then, by the equality

f
�
xy

nC1�

ynC1f .x/
D f

�
xy

nC1�

yf
�
xy

n
� � f

�
xy

n�

ynf .x/

and by substituting xy
n

for x in (11.6) we get

˛nC1.x; y/ � f
�
xy

nC1 �

ynC1f .x/
� ˇnC1.x; y/

which ends the proof of .a/.
Let m; n 2 N be given with n � m. Since

ln y�nf
�
xy

n� � lny�mf
�
xy

m� D ln
f
�
.xy

m

/y
n�m�

yn�mf
�
xy

m
� ;

.a/ implies

nX

iDmC1
ln
�
1 � ıx�yi � � ln y�nf

�
xy

n� � lny�mf
�
xy

m�

�
nX

iDmC1
ln
�
1C ıx�yi �

:
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Since the left- and right-hand sides of the above inequality tend to 0 asm ! 1, the
sequence flny�nf .xyn

/g is a Cauchy sequence. Therefore, we can define

Py.x/ D lim
n!1 ln y�nf

�
xy

n�

and

Ly.x/ D exp
�
Py.x/

�

for all x > 1 and y � 2. Indeed, it is not difficult to demonstrate

Ly.x/ D lim
n!1y�nf

�
xy

n �

for any x > 1.
Substituting xy

n
(x > 1, y � 2) and z .> 0/ for x and y in (11.6), respectively,

and letting n ! 1, then we obtain

lim
n!1f

�
xzyn �

z�1f
�
xy

n ��1 D 1: .b/

Hence, by using .b/, we have

Ly.x
z/ D lim

n!1y�nf
�
xzyn � D lim

n!1y�nf
�
xzyn�

z�1f
�
xy

n��1
zf
�
xy

n �

and

Ly.x
z/ D zLy.x/ .c/

for all x > 1 and z > 0. Clearly, it follows from .a/ that Ly satisfies the inequality

˛.x; y/ � Ly.x/

f .x/
� ˇ.x; y/ .d/

for x > 1.
Now, let L W .1;1/ ! .0;1/ be a function which satisfies .d/ for x > 1 and

.c/ for x > 1 and z > 0. (It follows from .d/ that if y � 2, then Ly.x/ ¤ 0 and
L.x/ ¤ 0 for all x > 1.) Then, it follows from .d/ and .c/ that

˛
�
xy

n
; y
�

ˇ
�
xy

n
; y
� � Ly.x/

L.x/
D Ly

�
xy

n �

L
�
xy

n
� � ˇ

�
xy

n
; y
�

˛
�
xy

n
; y
�

holds true for x > 1 and y � 2, which implies the uniqueness of Ly because
˛.x; y/ ! 1, ˇ.x; y/ ! 1 as x ! 1. This implies that if y0 > y � 2, then
Ly0 .x/ D Ly.x/ for all x > 1, because Ly0 satisfies .d/ for all x > 1 and .c/
for x > 1 and z > 0. Therefore, by letting y ! 1 in .d/ and by considering
˛.x; y/ ! 1, ˇ.x; y/ ! 1 as y ! 1 (when x > 1), we conclude that f itself
satisfies .c/ for all x > 1 and z > 0. ut
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11.3 Functional Equation of Heuvers

K. J. Heuvers [132] introduced a new type of logarithmic functional equation

f .x C y/ D f .x/C f .y/C f .1=x C 1=y/; (11.7)

which will be called the functional equation of Heuvers, and proved that this equa-
tion is equivalent to the “original” logarithmic equation, f .xy/ D f .x/C f .y/, in
the class of functions f W .0;1/ ! R.

Theorem 11.9. A function f W .0;1/ ! R is a solution of the functional equa-
tion (11.7) if and only if f is a solution of the “original” logarithmic functional
equation.

Proof. If we set y D 1=x in (11.7), then we have

f .1=x/ D �f .x/ .a/

and

f .1/ D 0: .b/

We observe that

.Hf /.x; y/ D f .x C y/ � f .x/ � f .y/

is a first Cauchy difference and

.Hf /.x; y; z/ D .Hf /.x C y; z/ � .Hf /.x; z/ � .Hf /.y; z/

D f .x C y C z/ � f .x C y/ � f .x C z/ � f .y C z/

Cf .x/C f .y/C f .z/

is a second Cauchy difference which is symmetric in x, y, and z (see [131]).
Thus, we get

f
�
1=.x C y/C 1=z

�� f .1=x C 1=z/� f .1=y C 1=z/

D f .x C y C z/ � f .x C y/� f .x C z/ � f .y C z/

C f .x/C f .y/C f .z/

D f
�
1=.y C z/C 1=x

�� f .1=y C 1=x/� f .1=z C 1=x/:

Consequently, we obtain

f
�
1=.xCy/C1=z

�Cf .1=xC1=y/ D f
�
1=.yCz/C1=x�Cf .1=yC1=z/: .c/
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Set 1=y C 1=z D 1 in .c/. Since y and z are positive, they are obviously greater
than 1 and it follows that

1

z
D 1 � 1

y
D y � 1

y
or z D y

y � 1
:

Moreover, we have

1

x C y
C 1

z
D 1

x C y
C y � 1

y
D y2 C xy � x

y.x C y/
;

1

x
C 1

y
D x C y

xy
;

1

y C z
C 1

x
D 1

y C y=.y � 1/
C 1

x
D y � 1

y2
C 1

x
D y2 C xy � x

xy2
:

It follows from .b/ and .c/ that

f

	
x C y

xy



C f

	
y2 C xy � x
y.x C y/



D f

	
y2 C xy � x

xy2



.d/

for all x > 0 and y > 1, since 1=y C 1=z D 1.
Now, let

u D x C y

xy
D 1

x
C 1

y
and v D y2 C xy � x

y.x C y/
:

It then follows that

uv D y2 C xy � x
xy2

and it follows from .d/ that

f .uv/ D f .u/C f .v/:

Since x > 0 and y > 1, u and v are positive but there may be further restriction
on them. We have

u D 1

x
C 1

y
and v D 1 � x=y

x C y
:

Thus, we get

u � 1

x
D 1

y
D xu � 1

x
or y D x

xu � 1
:

Moreover, we obtain

x C y D x C x

xu � 1
D x2u

xu � 1
or

1

x C y
D xu � 1

x2u
:
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Thus, we have

v D 1 � .xu � 1/2
x2u

or uv D u � .xu � 1/2
x2

:

Hence, we get

u � uv D u.1 � v/ D .xu � 1/2

x2
or y2 D x2

.xu � 1/2 D 1

u.1 � v/
:

Therefore, it follows that 0 < v < 1 and y D u�1=2.1 � v/�1=2. Thus, we have

u � 1=y D u � u1=2.1 � v/1=2 D 1=x D u1=2
�
u1=2 � .1 � v/1=2

�

or

x D u1=2 C .1 � v/1=2

u1=2.u � 1C v/
:

Hence, if u > 1, then u C v � 1 > 0. Therefore, we get

f .uv/ D f .u/C f .v/

for all u > 1 and 0 < v < 1.
Since

f .u/ D f .u/C f .1/ D f .u � 1/ and f .v/ D f .1/C f .v/ D f .1 � v/;

we obtain

f .uv/ D f .u/C f .v/ .e/

for all u � 1 and 0 < v � 1.
Assume that s � 1. Then, 0 < 1=s � 1 and 1 � s � s2 and it follows from .a/

and .e/ that

f .s/ D f
�
s2=s

� D f
�
s2
�C f .1=s/ D f

�
s2
� � f .s/

or

f
�
s2
� D 2f .s/: .f /

If 1 � s � t , then 0 < s=t � 1 and 1 � t � t2. Then, it follows from .a/, .e/, and
.f / that

f .st/ D f .s=t/C f
�
t2
�

D f .s/C f .1=t/C f
�
t2
�

D f .s/ � f .t/C 2f .t/

D f .s/C f .t/ (g)

for any s � 1 and t � 1.
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Assume now that 0 < s; t < 1. It then follows from .a/ and .g/ that

�f .st/ D f
�
1=.st/

� D f
�
.1=s/.1=t/

� D �f .s/ � f .t/:

Consequently, we have

f .uv/ D f .u/C f .v/

for all u > 0 and v > 0. Thus, every solution of (11.7) is a solution of the “original”
logarithmic functional equation.

Assume that f is a solution of the “original” logarithmic functional equation.
Then, it holds true that f .xy/ D f .x/ C f .y/ for all x > 0 and y > 0. Hence,
we get

f .x C y/ D f
�
x.1=x C 1=y/y

� D f .x/C f .1=x C 1=y/C f .y/:

Therefore, each solution of the “original” logarithmic functional equation is also a
solution of (11.7). ut

We will now apply Theorem 10.23 to the proof of the Hyers–Ulam stability of
the functional equation of Heuvers. S.-M. Jung [175] contributed to the following
theorem.

Theorem 11.10. If a function f W R ! R satisfies the functional inequality

ˇ̌
f .x C y/ � f .x/ � f .y/ � f .1=x C 1=y/

ˇ̌ � ı (11.8)

for some 0 � ı < ln 2 and for all x; y 2 Rnf0g, then there exists a unique logarith-
mic function ` W Rnf0g ! R such that

jf .x/ � `.x/j � .13=2/
�
ı � ln

�
2 � eı�� (11.9)

for each x 2 Rnf0g.

Proof. If we define a function g W R ! .0;1/ by

g.x/ D ef.x/; .a/

then it follows from (11.8) that

ˇ
ˇ
ˇ
ˇ

g.x C y/

g.x/g.y/g.1=x C 1=y/
� 1

ˇ
ˇ
ˇ
ˇ � eı � 1

for all x; y 2 Rnf0g. According to Theorem 10.23, there exists a multiplicative
functionm W Rnf0g ! .0;1/ with
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2 � eı

eı

!13=2
� m.x/

g.x/
�
 

eı

2 � eı

!13=2
.b/

for x 2 Rnf0g. Define a function ` W Rnf0g ! R by

`.x/ D lnm.x/: .c/

Then, ` is a logarithmic function. We can conclude by .a/, .b/, and .c/ that the
inequality (11.9) holds true for any x 2 Rnf0g.

Let `0 W Rnf0g ! R be another logarithmic function satisfying (11.9) for each
x 2 Rnf0g. Since ` and `0 are logarithmic, we get

`
�
x2

n� D 2n`.x/ and `0�x2n� D 2n`0.x/

for all x 2 Rnf0g and n 2 N . Hence, it follows from (11.9) that

j`.x/� `0.x/j D 2�nˇˇ`
�
x2

n� � `0�x2n�ˇˇ

� 2�nˇˇ`
�
x2

n� � f
�
x2

n�ˇˇC 2�nˇˇf
�
x2

n�� `0�x2n�ˇˇ

! 0 as n ! 1;

which implies the uniqueness of `. ut
The functional equation

f .x C y/ D g.x/C h.y/C k.1=x C 1=y/ (11.10)

is a Pexider generalization of the functional equation (11.7). K. J. Heuvers and Pl.
Kannappan [133] investigated the solutions of the functional equation (11.10).

Theorem 11.11. The twice-differentiable solution f; g; h; k W .0;1/ ! R of the
functional equation (11.10) is given by

f .x/ D �a lnx C bx C c1;

g.x/ D �a lnx C bx � d=x C c1 C c3;

h.x/ D �a lnx C bx � d=x � c2 � c3;

k.x/ D �a ln x C dx C c2;

(11.11)

where a, b, c1, c2, c3, and d are real constants.

Proof. If we differentiate (11.10) with respect to x and y, then we get

f 00.x C y/ D .1=xy/2k00.1=x C 1=y/:
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If we set s D x C y and t D 1=x C 1=y in the last equation, then we obtain
f 00.s/ D �

t2=s2
�
k00.t/ or

s2f 00.s/ D t2k00.t/ for st � 4: .a/

If we set s D 4 in .a/, then we have t2k00.t/ D a for t � 1. On the other hand, if
we set t D 4 in .a/, then we get s2f 00.s/ D a for s � 1, where a is a constant.

For 0 < t < 1 choose s > 4 so that st � 4. Then it follows from .a/ that f and
k satisfy the differential equation f 00.s/ D a=s2 and k00.t/ D a=t2 for s; t > 0.
If we integrate each function twice, then we obtain

f .x/ D �a ln x C bx C c1 and k.x/ D �a lnx C dx C c2:

Putting these into (11.10) yields

g.x/C h.y/ D �a lnx � a lny C bx C by � d=x � d=y C c1 � c2

or

g.x/C a lnx � bx C d=x � c1 D ��h.y/C a ln y � by C d=y C c2
� D c3;

where c3 is a constant. Hence, we conclude that the twice-differentiable solution of
the functional equation (11.10) is given by (11.11). ut



Chapter 12
Trigonometric Functional Equations

The famous addition and subtraction rules for trigonometric functions can be
represented by using functional equations. Some of these equations will be intro-
duced and the stability problems for them will be surveyed. Section 12.1 deals
with the superstability phenomenon of the cosine functional equation (12.1) which
stands for an addition theorem of cosine function. Similarly, the superstability of the
sine functional equation (12.3) is proved in Section 12.2. In Section 12.3, trigono-
metric functional equations (12.8) and (12.9) with two unknown functions will be
discussed. It is very interesting that these functional equations for complex-valued
functions defined on an amenable group are not superstable, but they are stable in the
sense of Hyers and Ulam, whereas the equations (12.1) and (12.3) are superstable.
In Section 12.4, we will deal with the Hyers–Ulam stability of the Butler–Rassias
functional equation.

12.1 Cosine Functional Equation

The addition rule cos.x C y/C cos.x � y/ D 2 cosx cosy for the cosine function
may be symbolized by the functional equation

f .x C y/C f .x � y/ D 2f .x/f .y/: (12.1)

This equation is called the cosine functional equation or d’Alembert equation.
In 1968, Pl. Kannappan [209] determined the general solution of the cosine func-

tional equation (12.1):

Every nontrivial solution f W R ! C of the functional equation (12.1) is
given by

f .x/ D .1=2/
�
m.x/Cm.�x/�;

where m W R ! Cnf0g is an exponential function.

J. Baker [16] was the first person to prove the superstability for this equation,
and later P. Găvruta [114] presented a short proof for the theorem. Before this proof
provided by Găvruta, we will introduce a lemma of Baker which is necessary to
prove the theorem of Baker and Găvruta (see [16]).

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 12, c� Springer Science+Business Media, LLC 2011
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Lemma 12.1. Let .G;C/ be an abelian group and let a function f W G ! C satisfy
the functional inequality

jf .x C y/C f .x � y/ � 2f .x/f .y/j � ı (12.2)

for all x; y 2 G and for some ı > 0. If jf .x/j > �
1 C p

1C 2ı
�
=2 for some

x 2 G, then jf .2nx/j ! 1 as n ! 1.

Proof. Let x 2 G and y D jf .x/j D " C p, where " D �
1 C p

1C 2ı
�
=2 and

p > 0. For simplicity, let � D ı C ". Then, we have

2y2 � y � � D 2."C p/2 � " � p � ı � "

D 2."2 � "/C .4" � 1/p C 2p2 � ı

D .4"� 1/p C 2p2

> 3p;

since " > 1 and 2."2 � "/ D ı. Hence,

2y2 � � > y C 3p: .a/

If we put y D x in (12.2), we get

ˇ
ˇf .2x/C f .0/ � 2f .x/2

ˇ
ˇ � ı;

and hence

jf .2x/j � ˇ̌
2f .x/2 � f .0/ˇ̌ � ı � 2jf .x/j2 � jf .0/j � ı:

Since jf .0/j � ", we have

jf .2x/j � 2jf .x/j2 � �: .b/

It follows from .a/ and .b/ that

jf .2x/j � 2jf .x/j2 � � > jf .x/j C 3p > "C 2p:

Assume that
jf .2nx/j � "C 2np .c/

for some integer n � 2. Then, if we replace x and y in (12.2) with 2nx simultane-
ously, it then follows from .c/ that

ˇ̌
f
�
2nC1x

�ˇ̌ � ˇ̌
2f .2nx/2 � f .0/ˇ̌ � ı

� 2jf .2nx/j2 � " � ı

� 2"2 � 2" � ı C "C 2nC2"pC 22nC1p2

� "C 2nC1p;
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since " > 1 and 2"2 � 2"� ı D 0. Hence, .c/ holds true for all n 2 N . ut
In the following theorem, we show that the cosine functional equation (12.1) is

superstable (ref. [16, 114]).

Theorem 12.2 (Baker and Găvruta). Let .G;C/ be an abelian group and let a
function f W G ! C satisfy the functional inequality (12.2) for all x; y 2 G and
for some ı > 0. Then either jf .x/j � �

1 C p
1C 2ı

�
=2 for any x 2 G or f

satisfies the cosine functional equation (12.1) for all x; y 2 G.

Proof. If there exists an x0 2 G such that

jf .x0/j >
�
1C

p
1C 2ı

�
=2;

then there exists a sequence fxng with

lim
n!1 jf .xn/j D 1 .a/

(see Lemma 12.1). Let x; y 2 G be given. From (12.2) it follows that

j2f .xn/f .x/ � f .x C xn/� f .x � xn/j � ı

for all n 2 N , and .a/ implies

f .x/ D lim
n!1

f .x C xn/C f .x � xn/

2f .xn/
: .b/

From .b/ we get

2f .x/f .y/ D lim
n!1An .c/

and

f .x C y/C f .x � y/ D lim
n!1Bn; .d /

where

An D
�
f .x C xn/C f .x � xn/

��
f .y C xn/C f .y � xn/

�

2f .xn/2

and

Bn D .1=2/f .xn/
�2�f .x C y C xn/C f .x C y � xn/

C f .x � y C xn/C f .x � y � xn/
�
f .xn/:
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By (12.2), we have

j2f .x C xn/f .y C xn/� f .x C y C 2xn/ � f .x � y/j � ı;

j2f .x � xn/f .y C xn/ � f .x C y/� f .x � y � 2xn/j � ı;

j2f .x C xn/f .y � xn/ � f .x C y/� f .x � y C 2xn/j � ı;

j2f .x � xn/f .y � xn/� f .x C y � 2xn/ � f .x � y/j � ı;

j � 2f .x C y C xn/f .xn/C f .x C y C 2xn/C f .x C y/j � ı;

j � 2f .x C y � xn/f .xn/C f .x C y/C f .x C y � 2xn/j � ı;

j � 2f .x � y C xn/f .xn/C f .x � y/C f .x � y C 2xn/j � ı;

j � 2f .x � y � xn/f .xn/C f .x � y/C f .x � y � 2xn/j � ı

for every n 2 N , and hence

jAn � Bnj � 2ı

jf .xn/j2 .e/

for all n 2 N . The relations .a/, .c/, .d/, and .e/ imply that f satisfies the func-
tional equation (12.1) for any x; y 2 G. ut

R. Badora [9] assumed the Kannappan condition f .x C y C z/ D f .x C z C y/

instead of the commutativity of the group G and proved the following theorem:

Let .G;C/ be a group. If a function f W G ! C satisfies

jf .x C y/C f .x � y/� 2f .x/f .y/j � ı;

jf .x C y C z/� f .x C z C y/j � "

for all x; y; z 2 G and for some ı; " > 0, then either f is bounded or f is a solution
of the cosine functional equation (12.1).

In 2002, R. Badora and R. Ger [10] proved the superstability of the cosine func-
tional equation.

Theorem 12.3. Let .G;C/ be an abelian group and let ' W G ! Œ0;1/ be a given
function. If a function f W G ! Cnf0g satisfies the inequality

jf .x C y/C f .x � y/ � 2f .x/f .y/j � '.x/

for all x; y 2 G, then either f is bounded or f is a solution of the cosine functional
equation (12.1).

Pl. Kannappan and G.-H. Kim [212] investigated the superstability of the gener-
alized cosine functional equations

f .x C y/C f .x � y/ D 2f .x/g.y/
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and

f .x C y/C f .x � y/ D 2g.x/f .y/

(see also [218]).

12.2 Sine Functional Equation

The sine functional equation

f .x C y/f .x � y/ D f .x/2 � f .y/2 (12.3)

reminds us of one of the trigonometric formulas:

sin.x C y/ sin.x � y/ D sin2 x � sin2 y:

We now introduce a theorem concerning the general solution of the sine functional
equation (12.3):

A function f W R ! C is a solution of the sine functional equation (12.3) if and
only if f is of the form

f .x/ D 0; f .x/ D A.x/; or f .x/ D c
�
m.x/�m.�x/�;

where A W R ! C is a nonzero additive function,m W R ! Cnf0g is an exponential
function, and c is a nonzero constant.

P. W. Cholewa [69] observed the superstability phenomenon of the sine func-
tional equation (12.3). For the proof of the theorem of Cholewa, we need the
following three lemmas originating from the paper [69].

Lemma 12.4. Let ı > 0, let .G;C/ be an abelian group in which division by 2 is
uniquely performable, and let a function f W G ! C satisfy the inequality

ˇ
ˇf .x C y/f .x � y/ � f .x/2 C f .y/2

ˇ
ˇ � ı (12.4)

for all x; y 2 G. If f is unbounded, then f .0/ D 0.

Proof. Put y D x and then u D 2x in (12.4). Then, we have

ˇ
ˇf .u/f .0/ � f .u=2/2 C f .u=2/2

ˇ
ˇ D jf .u/jjf .0/j � ı

and since jf .u/j can be as large as possible, we must have f .0/ D 0. ut
Lemma 12.5. The hypotheses in Lemma 12.4 are assumed. If f is unbounded, then
the inequality

jf .x C y/C f .x � y/ � 2f .x/g.y/j � ı (12.5)
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holds true for all x; y 2 G, where

g.x/ D f .x C a/ � f .x � a/
2f .a/

(12.6)

for all x 2 G and for some a 2 G with jf .a/j � 4.

Proof. If we put x D .u C v/=2 and y D .u � v/=2 in (12.4), then we have

ˇ
ˇf .u/f .v/� f

�
.u C v/=2

�2 C f
�
.u � v/=2

�2ˇˇ � ı .a/

for every u; v 2 G. Using .a/ and (12.6) yields

jf .x C y/C f .x � y/� 2f .x/g.y/j

� 1

jf .a/j
ˇ
ˇ
ˇ
ˇf .x C y/f .a/ � f

�x C y C a

2

�2 C f
�x C y � a

2

�2ˇˇ
ˇ
ˇ

C 1

jf .a/j
ˇ
ˇ̌
ˇf .x � y/f .a/ � f

�x � y C a

2

�2 C f
�x � y � a

2

�2ˇˇ̌
ˇ

C 1

jf .a/j
ˇ
ˇ
ˇ
ˇf
�x C y C a

2

�2 � f
�x � y � a

2

�2 � f .x/f .y C a/

ˇ
ˇ
ˇ
ˇ

C 1

jf .a/j
ˇ̌
ˇ
ˇf .x/f .y � a/ � f

�x C y � a

2

�2 C f
�x � y C a

2

�2ˇ̌
ˇ
ˇ

C
ˇ
ˇ
ˇ̌2f .x/

f .y C a/ � f .y � a/
2f .a/

� 2f .x/g.y/
ˇ
ˇ
ˇ̌

� 4ı

jf .a/j
� ı

for all x; y 2 G. ut
Lemma 12.6. The hypotheses in Lemma 12.4 are assumed. If f is unbounded, then
f satisfies the equation

f .x C y/C f .x � y/ D 2f .x/g.y/ (12.7)

for all x; y 2 G, where g is defined in (12.6).

Proof. Let x and y be two arbitrarily fixed points ofG. Then, using .a/ in the proof
of Lemma 12.5 and (12.5) yields

jf .z/jjf .x C y/C f .x � y/ � 2f .x/g.y/j
D ˇ̌

f .z/f .x C y/C f .z/f .x � y/ � 2f .x/f .z/g.y/ˇ̌
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�
ˇ̌
ˇ
ˇf .z/f .x C y/ � f

� z C x C y

2

�2 C f
� z � x � y

2

�2 ˇ̌
ˇ
ˇ

C
ˇ
ˇ
ˇ̌f .z/f .x � y/ � f

� z C x � y

2

�2 C f
� z � x C y

2

�2ˇˇ
ˇ̌

C
ˇ
ˇ
ˇ
ˇf
� z C x C y

2

�2 � f
� z � x C y

2

�2 � f .z C y/f .x/

ˇ
ˇ
ˇ
ˇ

C
ˇ̌
ˇ
ˇf
� z C x � y

2

�2 � f
� z � x � y

2

�2 � f .z � y/f .x/
ˇ̌
ˇ
ˇ

C
ˇ
ˇ
ˇ
�
f .z C y/C f .z � y/�f .x/ � 2f .z/g.y/f .x/

ˇ
ˇ
ˇ

� 4ı C ıjf .x/j

for each z 2 G. Hence,

jf .x C y/C f .x � y/ � 2f .x/g.y/j � �
4C jf .x/j�ııjf .z/j:

Since f is assumed to be an unbounded function and x is a fixed element, the right-
hand side of the last inequality can be as small as possible. Hence, the equation
(12.7) holds true for all x; y 2 G. ut

Now, we are able to prove the theorem of Cholewa (ref. [69]).

Theorem 12.7 (Cholewa). Let .G;C/ be an abelian group in which division by
2 is uniquely performable. Every unbounded function f W G ! C satisfying the
inequality (12.4) for some ı > 0 and for all x; y 2 G is a solution of the sine
functional equation (12.3).

Proof. Let f be an unbounded solution of the inequality (12.4). If we put x D 0 in
(12.7), it then follows from Lemma 12.4 that

f .y/ D �f .�y/ .a/

for any y 2 G. Now, put x D .u C v/=2 and y D .u � v/=2 in (12.7). Then, we get

f .u/C f .v/ D 2f
�
.u C v/=2

�
g
�
.u � v/=2

�
.b/

for every u; v 2 G. From Lemma 12.4 and .b/, it follows that

f .x C y/ D f .x C y/C f .0/ D 2f
�
.x C y/=2

�
g
�
.x C y/=2

�
.c/

for all x; y 2 G, and

f .x � y/ D f .x � y/C f .0/ D 2f
�
.x � y/=2�g�.x � y/=2

�
.d/
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for any x; y 2 G. Using .a/ and .b/ yields

f .x/ � f .y/ D f .x/C f .�y/ D 2f
�
.x � y/=2

�
g
�
.x C y/=2

�
.e/

for every x; y 2 G. Now, using .b/, .c/, .d/, and .e/ yields

f .x C y/f .x � y/

D �
2f
�
.x C y/=2

�
g
�
.x C y/=2

���
2f
�
.x � y/=2

�
g
�
.x � y/=2��

D �
2f
�
.x C y/=2

�
g
�
.x � y/=2

���
2f
�
.x � y/=2�g�.x C y/=2

��

D �
f .x/C f .y/

��
f .x/ � f .y/�

D f .x/2 � f .y/2

for any x; y 2 G. ut
J. Baker [16] and P. Găvruta [114] proved in Theorem 12.2 that, concerning the

superstability of the cosine equation, a function f satisfying the inequality (12.2)
is either a solution of the cosine equation (12.1) or it is bounded by a constant
depending on ı only. It is not the case for the sine equation. Indeed, the bounded
functions

fn.x/ D n sin x C 1=n

satisfy the inequality (12.4) with ı D 3, for all x; y 2 R and for all n 2 N . However,
for each " > 0, the inequality jfn.x/j � " fails to hold true for certain x and n.

The sine functional equation (12.3) can be rewritten as

f .x/f .y/ D f
�x C y

2

�2 � f
�x � y

2

�2
:

For an endomorphism � W G ! G of order 2 of the uniquely 2-divisible abelian
group G, G.-H. Kim [216] proved the stability of the following generalized sine
functional equations:

g.x/f .y/ D f
�x C y

2

�2 � f
�x C �y

2

�2
;

f .x/g.y/ D f
�x C y

2

�2 � f
�x C �y

2

�2
;

g.x/g.y/ D f
�x C y

2

�2 � f
�x C �y

2

�2
:

12.3 Trigonometric Equations with Two Unknowns

So far, we have seen the superstability results concerning the cosine and sine func-
tional equations (12.1) and (12.3). Obviously, there are other equations which are
satisfied by the cosine and sine functions.
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L. Székelyhidi [345] introduced the functional equations

f .xy/ D f .x/f .y/ � g.x/g.y/ (12.8)

and

f .xy/ D f .x/g.y/C f .y/g.x/ (12.9)

for complex-valued functions defined on a semigroup .G; �/. We see that the equa-
tions (12.8) and (12.9) describe addition theorems for cosine and sine.

If G is a semigroup and F is a vector space of complex-valued functions on G,
then we say that the functions f; g W G ! C are linearly independent modulo F if
	f C �g 2 F implies 	 D � D 0 for any 	;� 2 C. The vector space F is said to
be invariant if f 2 F implies that the functions f .xy/ and f .yx/ belong to F for
each fixed y 2 G.

L. Székelyhidi [345] presented the following lemma.

Lemma 12.8. Let .G; �/ be a semigroup, f; g W G ! C be functions, and F be an
invariant vector space of complex-valued functions onG. Suppose that f and g are
linearly independent modulo F . If the functions

x 7! f .xy/ � f .x/f .y/C g.x/g.y/

and

x 7! f .xy/ � f .yx/

belong to F for each fixed y 2 G, then f and g satisfy the functional equation
(12.8) for all x; y 2 G.

Proof. Let us define

F.x; y/ D f .xy/ � f .x/f .y/C g.x/g.y/ .a/

for every x; y 2 G. Then there are constants 	0; 	1; 	2 2 C and y1 2 G with

g.x/ D 	0f .x/C 	1f .xy1/C 	2F.x; y1/ .b/

for each x 2 G. Using .a/ and .b/ yields

f ..xy/z/ D f .xy/f .z/ � g.z/g.xy/C F.xy; z/

D f .x/f .y/f .z/ � g.x/g.y/f .z/ C F.x; y/f .z/

� 	0f .xy/g.z/ � 	1f .xyy1/g.z/ � 	2F.xy; y1/g.z/C F.xy; z/

D f .x/f .y/f .z/ � g.x/g.y/f .z/ C F.x; y/f .z/

� 	0f .x/f .y/g.z/ C 	0g.x/g.y/g.z/ � 	0F.x; y/g.z/

� 	1f .x/f .yy1/g.z/C 	1g.x/g.yy1/g.z/ � 	1F.x; yy1/g.z/

� 	2F.xy; y1/g.z/C F.xy; z/

for all x; y; z 2 G.
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On the other hand, it follows from .a/ that

f
�
.xy/z

� D f
�
x.yz/

� D f .x/f .yz/ � g.x/g.yz/C F.x; yz/;

and equating the last two equalities yields

f .x/
�
f .y/f .z/ � 	0f .y/g.z/ � 	1f .yy1/g.z/ � f .yz/

�

� g.x/
�
g.y/f .z/ � 	0g.y/g.z/ � 	1g.yy1/g.z/ � g.yz/

�

D F.x; yz/ � F.xy; z/ � F.x; y/f .z/C 	0F.x; y/g.z/

C 	1F.x; yy1/g.z/C 	2F.xy; y1/g.z/:

Using the linear independence of f and g modulo F yields

F.x; yz/ � F.xy; z/ D F.x; y/f .z/ � 	0F.x; y/g.z/

� 	1F.x; yy1/g.z/ � 	2F.xy; y1/g.z/:

By the hypotheses, it follows that the left-hand side belongs to F as a function of z
for all fixed x; y 2 G. Again using the linear independence of f and g modulo F
and the fact that F is an invariant vector space yield F.x; y/ D 0 for all x; y 2 G,
which ends the proof. ut

If .G; �/ is a semigroup, then the function a W G ! C satisfying a.xy/ D
a.x/ C a.y/, for all x; y 2 G, will be called additive. If a function m W G ! C
satisfiesm.xy/ D m.x/m.y/ for every x; y 2 G, thenm is said to be an exponential
(see also Section 9.1).

Székelyhidi [345] also contributed to the following lemma.

Lemma 12.9. Let .G; �/ be a semigroup, let f; g W G ! C be functions, and let F
be an invariant vector space of complex-valued functions on G. If the functions

x 7! f .xy/ � f .x/f .y/C g.x/g.y/

and
x 7! f .xy/ � f .yx/

belong to F for each fixed y 2 G, then we have the following possibilities:

(i) f; g 2 F ;
(ii) f is an exponential, and g belongs to F ;

(iii) f C g or f � g is an exponential in F ;
(iv) f D 	2.	2 � 1/�1m � .	2 � 1/�1b, g D 	.	2 � 1/�1m � 	.	2 � 1/�1b,

where m W G ! C is an exponential, b W G ! C belongs to F , and 	 2 C is
a constant with 	2 ¤ 1;

(v) f and g satisfy the functional equation (12.8) for all x; y 2 G.
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Proof. If f and g are linearly independent moduloF , then .v/ follows from Lemma
12.8. If g 2 F , then .i/ or .ii/ follows from Theorem 9.2. If f 2 F , then g 2 F ,
hence .i/ follows.

Now, we suppose that f and g are linearly independent modulo F , but f; g 62 F .
Then there exists a constant 	 ¤ 0 with f D 	g C b and b 2 F ; hence, by the
assumption, the function

x 7! g.xy/ � .1=	/
�
.	2 � 1/g.y/C 	b.y/

�
g.x/

belongs to F . By Theorem 9.2 again, we have that

.1=	/.	2 � 1/g C b D m

is an exponential, which gives .iii/ for 	2 D 1 and .iv/ for 	2 ¤ 1. ut
Székelyhidi [345] has proved the stability of the functional equation (12.8) for

complex-valued functions on an amenable group, whereas we have seen the super-
stability phenomena for the cosine equation (12.1) and the sine equation (12.3) (see
Theorems 12.2 and 12.7).

Theorem 12.10. Let .G; �/ be an amenable group and let f; g W G ! C be func-
tions. The function

.x; y/ 7! f .xy/ � f .x/f .y/C g.x/g.y/

is bounded if and only if we have one of the following possibilities:

(i) f and g are bounded;
(ii) f is an exponential, and g is bounded;

(iii) f D .1C a/mC b, g D amC b or f D amC b, g D .1 � a/m � b, where
a W G ! C is additive,m W G ! C is a bounded exponential, and b W G ! C
is bounded;

(iv) f D 	2.	2 � 1/�1m � .	2 � 1/�1b, g D 	.	2 � 1/�1m � 	.	2 � 1/�1b,
where m W G ! C is an exponential, b W G ! C is bounded, and 	 2 C is a
constant with 	2 ¤ 1;

(v) f and g satisfy the functional equation (12.8) for all x; y 2 G.

Proof. Let F be the set of all bounded complex-valued functions on G. First, we
must prove the necessity. If g is bounded, then we have .i/ or .ii/ by Theorem 9.2.
If f Cg or f �g is a bounded exponential corresponding to Lemma 12.9 .iii/, then
we have .iii/ by using Hyers’s theorem (see [344]). Finally, the remaining follows
from Lemma 12.9. The sufficiency follows by direct calculations. ut

We now discuss the stability of the functional equation (12.9). The following
lemma is a modified version of Lemma 12.8 which is applicable to the functional
equation (12.9). The proof of the lemma can be provided by the reader (or see [345,
Lemma 2.1]).



278 12 Trigonometric Functional Equations

Lemma 12.11. Let .G; �/ be a semigroup, let f; g W G ! C be functions, and let
F be an invariant vector space of complex-valued functions on G. Suppose that f
and g are linearly independent modulo F . If the function

x 7! f .xy/ � f .x/g.y/ � f .y/g.x/

belongs to F for each fixed y 2 G, then f and g satisfy the functional equation
(12.9) for all x; y 2 G.

Lemma 12.12. Let .G; �/ be a semigroup, let f; g W G ! C be functions, and let F
be an invariant vector space of complex-valued functions on G. If the function

x 7! f .xy/ � f .x/g.y/ � f .y/g.x/

belongs to F for each fixed y 2 G, then we have the following possibilities:

(i) f D 0 and g is arbitrary;
(ii) f; g 2 F ;

(iii) g 2 F is an exponential;
(iv) f D 	m � 	b, g D .1=2/mC .1=2/b, where m W G ! C is an exponential,

b W G ! C belongs to F , and 	 2 C is a constant;
(v) f and g satisfy the functional equation (12.9) for all x; y 2 G.

Proof. If f and g are linearly independent moduloF , then .v/ follows from Lemma
12.11.

Now, we suppose that there are constants �; � 2 C (at least one of them is
different from zero) such that �f C �g 2 F but f; g 62 F . Then we have g D
.2	/�1f C b with b 2 F and 	 ¤ 0. Hence, our hypothesis implies that the
function

x 7! f .xy/ � �
.1=	/f .y/C b.y/

�
f .x/

belongs to F for each fixed y 2 G. From Theorem 9.2 it follows that

.1=	/f .y/C b.y/ D m.y/;

wherem W G ! C is an exponential, which implies .iv/.
If g 2 F and f 62 F , then

x 7! f .xy/ � f .x/g.y/

belongs to F for all fixed y 2 G, and .iii/ follows from Theorem 9.2.
If f 2 F and f ¤ 0, then g 2 F . If f D 0, then g is arbitrary. ut
Székelyhidi [345] proved the following theorem concerning the stability of the

functional equation (12.9).
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Theorem 12.13. Let .G; �/ be an amenable group and let f; g W G ! C be given
functions. The function

.x; y/ 7! f .xy/ � f .x/g.y/ � f .y/g.x/
is bounded if and only if we have one of the following possibilities:

(i) f D 0 and g is arbitrary;
(ii) f and g are bounded;

(iii) f D amC b, g D m, where a W G ! C is additive,m W G ! C is a bounded
exponential, and b W G ! C is bounded;

(iv) f D 	m � 	b, g D .1=2/mC .1=2/b, where m W G ! C is an exponential,
b W G ! C is bounded, and 	 2 C is a constant;

(v) f and g satisfy the functional equation (12.9) for all x; y 2 G.

Proof. Applying Lemma 12.11 with F denoting the set of all bounded complex-
valued functions on G, we see that either one of the above conditions .i/, .ii/, .iv/,
.v/ is satisfied, or g D m is a bounded exponential. In the latter case, the function

.x; y/ 7! f .xy/m
�
.xy/�1

� � f .x/m�x�1� � f .y/m�y�1�

is bounded. Hence, by Hyers’s theorem (see [344])

f .x/m
�
x�1� D a.x/C b0.x/

holds true for all x 2 G, where a W G ! C is additive and b0 W G ! C is
bounded, and our statement follows. (We have excluded the trivial case m D 0,
and we have used the obvious identity m.x/m

�
x�1� D 1, which holds true for any

nonzero exponential.) The sufficiency follows by direct calculations. ut

12.4 Butler–Rassias Functional Equation

In 2003, S. Butler [53] posed the following problem:

Problem (Butler). Show that for c < �1 there are exactly two solutions f W R ! R
of the functional equation, f .x C y/ D f .x/f .y/C c sin x sin y.

M. Th. Rassias has excellently answered this problem by proving the following
theorem (see [283]):

Theorem 12.14 (Rassias). Let c < �1 be a constant. The functional equation

f .x C y/� f .x/f .y/ � c sin x sin y D 0 (12.10)

has exactly two solutions in the class of functions f W R ! R. More precisely,

f .x/ D a sin x C cosx and f .x/ D �a sin x C cosx;

where a D pjcj � 1.
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Proof. Replacing x with x C z in (12.10) yields

f .x C y C z/ � f .x C z/f .y/ � c sin.x C z/ sin y D 0 .a/

for all x; y; z 2 R. Similarly, if we replace y with y C z in (12.10), then we get

f .x C y C z/ � f .x/f .y C z/� c sin x sin.y C z/ D 0 .b/

for any x; y; z 2 R.
It follows from .a/ and .b/ that

f .x/f .y C z/ � f .x C z/f .y/C c sin x sin.y C z/� c sin.x C z/ sin y D 0;

and hence

f .x/
�
f .y C z/ � f .y/f .z/ � c sin y sin z

�

C f .x/f .y/f .z/C cf .x/ sin y sin z

� �
f .x C z/ � f .x/f .z/ � c sin x sin z

�
f .y/

� f .x/f .y/f .z/ � cf .y/ sin x sin z

C c sinx sin.y C z/ � c sin.x C z/ sin y

D f .x/f .y C z/� f .x C z/f .y/

C c sin x sin.y C z/ � c sin.x C z/ sin y

D 0 (c)

for every x; y; z 2 R.
Hence, it follows from (12.10) and .c/ that

cf .x/ sin y sin z C c sin x sin.y C z/

� cf .y/ sin x sin z � c sin.x C z/ sin y

D f .x/
�
f .y C z/ � f .y/f .z/ � c sin y sin z

�

C f .x/f .y/f .z/ C cf .x/ sin y sin z

� �
f .x C z/ � f .x/f .z/ � c sin x sin z

�
f .y/

� f .x/f .y/f .z/ � cf .y/ sin x sin z

C c sin x sin.y C z/ � c sin.x C z/ sin y

C f .x/
� � f .y C z/C f .y/f .z/C c sin y sin z

�

C f .y/
�
f .x C z/� f .x/f .z/ � c sin x sin z

�

D 0 (d)

for all x; y; z 2 R.
If we set y D z D �=2 in the last equality, then

f .x/ � f .�=2/ sinx � cos x D 0 .e/



12.4 Butler–Rassias Functional Equation 281

for each x 2 R. Substituting � for x in .d/ yields f .�/ D �1. If we put x D y D
�=2 in (12.10), then we obtain

f .�=2/2 D f .�/ � c D jcj � 1
and hence

f .�=2/ D
p

jcj � 1 D a or f .�=2/ D �
p

jcj � 1 D �a:
Consequently, by .e/, we have

f .x/ D a sin x C cosx or f .x/ D �a sin x C cosx

for all x 2 R. ut
Based on these historical facts, the equation (12.10) is called the Butler–Rassias

functional equation. It is astonishing that M.Th. Rassias solved the Butler–Rassias
functional equation (12.10) when he was a 16-year-old high school student.

In the following lemma, we will prove that every function f W R ! R satisfying
the inequality (12.11) is bounded.

Lemma 12.15. Let c and ı be real constants with c < �1 and 0 < ı < jcj. If a
function f W R ! R satisfies the functional inequality

jf .x C y/ � f .x/f .y/ � c sinx sinyj � ı (12.11)

for all x; y 2 R, then

sup
x2R

jf .x/j � .1=2/
�
1C

p
1C 8jcj

�

holds true.

Proof. As 0 < ı < jcj, it follows from (12.11) that

�2jcj � f .x C y/� f .x/f .y/ � 2jcj

for all x; y 2 R, which is equivalent to the inequality

jf .x C y/ � f .x/f .y/j � 2jcj

for any x; y 2 R.
According to Theorem 9.1, f is either an exponential function or bounded. If f

were an exponential function, then it would follow from (12.11) that jc sin x sin yj �
ı for any x; y 2 R, which is contrary to our hypothesis, ı < jcj. Indeed, f satisfies

jf .x/j � .1=2/
�
1C

p
1C 8jcj

�

for each x 2 R. ut
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Based on Lemma 12.15, we can prove the following lemma.

Lemma 12.16. Let c and ı be real constants with c < �1 and 0 < ı < jcj. If a
function f W R ! R satisfies the inequality (12.11) for all x; y 2 R, then

jf .x/ � f .�=2/ sinx � cos xj � 3Cp
1C 8jcj
jcj ı

for all x 2 R.

Proof. Following the steps from .a/ to .d/ in the proof of Theorem 12.14 yields

ˇ
ˇcf .x/ sin y sin z C c sin x sin.y C z/

�cf .y/ sin x sin z � c sin.x C z/ sin y
ˇ
ˇ

� �
2C jf .x/j C jf .y/j�ı

for all x; y; z 2 R. Setting y D z D �=2 and considering Lemma 12.15 end the
proof. ut

In the following theorem, we prove the Hyers–Ulam stability of the Butler–
Rassias functional equation (see [179, 186]).

Theorem 12.17. Let c and ı be real constants with c < �1 and 0 < ı < jcj. If
a function f W R ! R satisfies the inequality (12.11) for all x; y 2 R, then there
exists a solution function f0 W R ! R of the Butler–Rassias functional equation
(12.10) such that

jf .x/ � f0.x/j �
�
3Cp

1C 8jcj
� �
1Cpjcj � 1

�
C jcj

jcjpjcj � 1
ı

for all x 2 R.

Proof. Let 0 < ı < jcj and let f W R ! R satisfy the inequality (12.11) for all
x; y 2 R. It follows from Lemma 12.16 that

jf .x/ � f .�=2/ sinx � cos xj � 3Cp
1C 8jcj
jcj ı .a/

for all x 2 R. Put x D � in .a/ to get

jf .�/C 1j � 3Cp
1C 8jcj
jcj ı: .b/
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Moreover, setting x D y D �=2 in (12.11) yields

ˇ
ˇf .�/ � f .�=2/2 � cˇˇ � ı: .c/

Combining .b/ and .c/ yields

ˇ
ˇf .�=2/2 C c C 1

ˇ
ˇ � 3C jcj Cp

1C 8jcj
jcj ı:

With a D pjcj � 1 > 0, we have

ˇ
ˇf .�=2/2 � a2ˇˇ � 3C jcj Cp

1C 8jcj
jcj ı: .d/

Assume that f .�=2/ � 0. It then follows from .d/ that

jf .�=2/� aj � 3C jcj Cp
1C 8jcj

jcjjf .�=2/C aj ı � 3C jcj Cp
1C 8jcj

ajcj ı: .e/

Hence, .a/ and .e/ imply that

jf .x/ � a sin x � cosxj
� jf .x/ � f .�=2/ sinx � cosxj C j.f .�=2/� a/ sin xj

�
�
3Cp

1C 8jcj
� �
1Cpjcj � 1

�
C jcj

jcjpjcj � 1 ı

for all x 2 R.
Assume now that f .�=2/ < 0. It then follows from .d/ that

jf .�=2/C aj � 3C jcj Cp
1C 8jcj

jcjjf .�=2/� aj ı � 3C jcj Cp
1C 8jcj

ajcj ı: .f /

Thus, combining .a/ and .f / yields

jf .x/C a sin x � cos xj
� jf .x/ � f .�=2/ sinx � cosxj C j.f .�=2/C a/ sinxj

�
�
3Cp

1C 8jcj
� �
1Cpjcj � 1

�
C jcj

jcjpjcj � 1
ı

for any x 2 R.
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We define

f0.x/ D
(
a sin x C cos x .for f .�=2/ � 0/;

�a sinx C cos x .for f .�=2/ < 0/

for all x 2 R. In view of Theorem 12.14, both a sinxCcos x and �a sin xCcos x are
solutions of the Butler–Rassias functional equation (12.10). Hence, f0 is a solution
function of the Butler–Rassias functional equation. ut

12.5 Remarks

R. Ger [121] considered the functional equations (12.8) and (12.9) simultaneously
– more precisely, he considered the system

(
f .xy/ D f .x/g.y/C f .y/g.x/;

g.xy/ D g.x/g.y/ � f .x/f .y/
(12.12)

and proved that the system is not superstable, but that it is stable in the sense of
Hyers, Ulam, and Rassias.

Theorem 12.18. Let .G; �/ be a semigroup and let h; k W G2 ! Œ0;1/ be functions
such that the sections h.�; x/ and k.x; �/ are bounded for each fixed x 2 G. Assume
that f; g W G ! C satisfy the system of inequalities

(
jf .xy/ � f .x/g.y/ � f .y/g.x/j � h.x; y/;

jg.xy/ � g.x/g.y/C f .x/f .y/j � k.x; y/

for all x; y 2 G. Then there exists a solution .s; c/ of the system (12.12) such that
f � s and g � c are bounded.



Chapter 13
Isometric Functional Equation

An isometry is a distance-preserving map between metric spaces. For normed spaces
E1 and E2, a function f W E1 ! E2 is called an isometry if f satisfies the iso-
metric functional equation kf .x/ � f .y/k D kx � yk for all x; y 2 E1. The
historical background for Hyers–Ulam stability of isometries will be introduced in
Section 13.1. The Hyers–Ulam–Rassias stability of isometries on a restricted do-
main will be surveyed in Section 13.2. Section 13.3 will be devoted to the fixed
point method for studying the stability problem of isometries. In the final section,
the Hyers–Ulam–Rassias stability of Wigner equation jhf .x/; f .y/ij D jhx; yij on
a restricted domain will be discussed.

13.1 Hyers–Ulam Stability

Throughout this section, assume that ı is a positive constant. For normed spaces�
E1; k � k1

�
and

�
E2; k � k2

�
, a function f W E1 ! E2 is called a ı-isometry if f

changes distances at most ı, i.e.,

ˇ̌kf .x/ � f .y/k2 � kx � yk1
ˇ̌ � ı (13.1)

for all x; y 2 E1.
In 1945, D. H. Hyers and S. M. Ulam [139] proved the Hyers–Ulam stability of

isometries by making use of a direct method. First, we will introduce their lemmas.

Lemma 13.1. LetE be a complete abstract Euclidean space. Assume that f W E !
E is a ı-isometry and f .0/ D 0. The limit

I.x/ D lim
n!1 2�nf .2nx/ (13.2)

exists for any x 2 E and I W E ! E is an isometry.

Proof. Assume that x is an arbitrary point of E and let r D kxk. Since f is a
ı-isometry, it follows from (13.1) that

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 13, c� Springer Science+Business Media, LLC 2011
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ˇ
ˇkf .x/k � r

ˇ
ˇ � ı and

ˇ
ˇkf .x/ � f .2x/k � rˇˇ � ı: .a/

If we replace x and y in (13.1) with 0 and 2x, respectively, and set y0 D .1=2/

f .2x/, then we have ˇ
ˇky0k � rˇˇ � .1=2/ı: .b/

We consider the intersection of two balls:

S1 D ˚
y 2 E j kyk � r C ı

�
and S2 D ˚

y 2 E j ky � 2y0k � r C ı
�
:

Then, it holds true that f .x/ 2 S1 \ S2. For any y 2 S1 \ S2, we get

kyk2 � .r C ı/2;
(c)

ky � 2y0k2 D kyk2 C 4ky0k2 � 4hy; y0i � .r C ı/2;

where h�; �i denotes the inner product on E . It follows from .a/, .b/, and .c/ that

2ky � y0k2 D kyk2 C 4ky0k2 � 4hy; y0i C kyk2 � 2ky0k2
� .r C ı/2 C kyk2 � 2ky0k2
� 2.r C ı/2 � 2ky0k2

�
(
2.r C ı/2 � 2.r � ı=2/2 .for kxk � ı/;

2.r C ı/2 .for kxk < ı/

D
(
6ır C .3=2/ı2 .for kxk � ı/;

2.r C ı/2 .for kxk < ı/: (d)

Since f .x/ 2 S1 \ S2, substituting f .x/ for y in .d/ yields

kf .x/ � .1=2/f .2x/k �
(
2
�
ıkxk�1=2 .for kxk � ı/;

2ı .for kxk < ı/:

Therefore, we have

kf .x=2/ � .1=2/f .x/k � 2�1=2kkxk1=2 C 2ı .e/

for all x 2 E , where we set k D 2ı1=2. By applying the induction on n, we will
prove that

kf .2�nx/ � 2�nf .x/k � 2�n=2kkxk1=2
n�1X

iD0
2�i=2 C .1 � 2�n/4ı .f /

for any x 2 E and n 2 N . In view of .e/, the inequality .f / holds true for n D 1.
Assume that .f / is true for some integer n > 0. By dividing the inequality .f / by
2, we have
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�
�.1=2/f .2�nx/ � 2�.nC1/f .x/

�
�

� 2�.nC1/=2kkxk1=2
nX

iD1
2�i=2 C .1 � 2�n/2ı:

If we replace x with 2�nx in .e/, we get

�
�f
�
2�.nC1/x

� � .1=2/f .2�nx/
�
� � 2�.nC1/=2kkxk1=2 C 2ı:

By adding the last two inequalities, we obtain

�
�f
�
2�.nC1/x

� � 2�.nC1/f .x/
�
�

� 2�.nC1/=2kkxk1=2
nX

iD0
2�i=2 C �

1 � 2�.nC1/�4ı;

which proves the validity of .f / for all x 2 E and n 2 N .
We will now present that f2�nf .2nx/g is a Cauchy sequence. If n and p are any

positive integers, then it follows from .f / that

k2�nf .2nx/ � 2�.nCp/f .2nCpx/k
� 2�nkf .2�p2nCpx/ � 2�pf .2nCpx/k

� kkxk1=2
nCp�1X

iDn
2�i=2 C 2�n.1 � 2�p/4ı

! 0 as n ! 1

for any x 2 E , which implies that f2�nf .2nx/g is a Cauchy sequence. Since E is
complete, we can define a function I W E ! E by (13.2).

Finally, it remains to prove that I is an isometry. Let x and y be arbitrary points
ofE . Replace x and y in (13.1) with 2nx and 2ny, respectively, divide the inequality

ˇ
ˇkf .2nx/ � f .2ny/k � 2nkx � ykˇˇ � ı

by 2n; and take the limit as n ! 1. The result is kI.x/� I.y/k D kx � yk, which
ends the proof. ut
Lemma 13.2. LetE be a complete abstract Euclidean space. Assume that f W E !
E is a ı-isometry and f .0/ D 0. If u and x are any points of E with kuk D 1 and
hx; ui D 0, then jhf .x/; I.u/ij � 3ı, where h�; �i is the inner product on E and I is
defined by (13.2).
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Proof. For any integer n, we set z D 2nu. Let y denote an arbitrary point of the
sphere Sn of radius 2n and center at z. Then, it holds true that ky � zk2 D kzk2 and
hence we have hy; ui D 2�n�1hy; yi.

Since f is a ı-isometry and ky � zk D kzk, we get

ˇ
ˇkf .y/ � f .z/k � ky � zkˇˇ � ı or

ˇ
ˇkf .y/ � f .z/k � kzkˇˇ � ı

and
ˇ
ˇkzk � kf .z/kˇˇ � ı:

By adding the last two inequalities, we obtain

ˇ
ˇkf .y/ � f .z/k � kf .z/kˇˇ � 2ı;

i.e., kf .y/ � f .z/k D 
.y; z/C kf .z/k, where j
.y; z/j � 2ı.
The last equality may be expressed as

2hf .y/; f .z/i D hf .y/; f .y/i � 2
kf .z/k � 
2:

If we divide the last equality by 2nC1, then we obtain

˝
f .y/; 2�nf .2nu/

˛ D 2�.nC1/�hf .y/; f .y/i � 
2
� � 
k2�nf .2nu/k: .a/

Now, let x be any point of the hyperplane hx; ui D 0. If we set y D x C ru with

r D 2n � �
22n � kxk2�1=2, then y is a point of the sphere Sn:

ky � zk2 D hy; yi � 2hy; zi C hz; zi
D hx; xi C r2 � 2hx; zi � 2rhu; zi C hz; zi
D r2 � 2nC1r C kxk2 C kzk2
D kzk2:

Moreover, ky � xk D r ! 0 as n ! 1. In view of Lemma 13.1, we see that

t D lim
n!1 2�nf .2nu/

exists and is a unit vector.
Finally, for any " > 0 and n sufficiently large, it follows from .a/ that

jhf .x/; tij � jhf .x/; t � 2�nf .2nu/ij C jhf .y/; 2�nf .2nu/ij
C jhf .x/ � f .y/; 2�nf .2nu/ij
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� kf .x/kkt � 2�nf .2nu/k C .1=2/"

C 2ık2�nf .2nu/k C kf .x/ � f .y/kk2�nf .2nu/k
� "C 3ı.1C "/

and hence we have

jhf .x/; I.u/ij D jhf .x/; tij � 3ı;

which ends the proof. ut
Lemma 13.3. LetE be a complete abstract Euclidean space. Assume that f W E !
E is a surjective ı-isometry and f .0/ D 0. Then the I W E ! E defined by (13.2)
is also surjective.

Proof. For any z 2 E , let f �1.z/ denote any point whose f -image is z. Then,
f �1 W E ! E is a ı-isometry. According to Lemma 13.1, the limit

I�.z/ D lim
n!1 2�nf �1.2nz/

exists, and I� is an isometry of E .
Now, it is obvious that

�
�2nz � f

�
2nI�.z/

��� D �
�f
�
2n2�nf �1.2nz/

� � f
�
2nI�.z/

���

� 2n
�
�2�nf �1.2nz/� I�.z/

�
�C ı:

If we divide the last inequality by 2n and let n ! 1, then we see that z D I
�
I�.z/

�

for each z 2 E . Therefore, we conclude that I.E/ D E . ut
Using the preceding lemmas, Hyers and Ulam proved in [139] that the surjective

isometries of a complete Euclidean space are stable in the sense of Hyers and Ulam.

Theorem 13.4 (Hyers and Ulam). Let E be a complete abstract Euclidean space.
Assume that f W E ! E is a surjective ı-isometry and f .0/ D 0. Then the I W
E ! E defined by (13.2) is a surjective isometry, and the inequality

kf .x/ � I.x/k � 10ı

holds true for all x 2 E .

Proof. For a given x 2 Enf0g, let M denote the linear manifold orthogonal to x. In
view of Lemma 13.3, I W E ! E is a surjective isometric transformation. Hence,
I.M/ is the linear manifold orthogonal to I.x/. Let w be the projection of f .x/ on
I.M/. Let us define

t D
�
0 .for w D 0/;�
1=kwk�w .for w ¤ 0/:
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According to Lemma 13.2, we see that jhf .x/; tij � 3ı. Put v D �
1=kxk�I.x/.

Then, v is a unit vector orthogonal to t and is coplanar with f .x/ and t . Thus, by
the Pythagorean theorem, we have

kf .x/ � I.x/k2 D hf .x/; ti2 C �kxk � hf .x/; vi�2: .a/

Let zn D 2nx and let wn denote the projection of f .zn/ on I.M/. Let us define

tn D
�
0 .for wn D 0/;�
1=kwnk�wn .for wn ¤ 0/:

In either case, we see that htn; vi D 0 and jhf .zn/; tnij � 3ı. If kf .zn/k < 3ı, it is
obvious that kf .zn/k � jhf .zn/; vij � 3ı. Assume now that kf .zn/k � 3ı. Since
�
1 � ˛2

�1=2 � 1 � ˛2 for any �1 � ˛ � 1 and jhf .zn/; tnij � kf .zn/k, we have

0 � kf .zn/k � jhf .zn/; vij
D kf .zn/k � �kf .zn/k2 � hf .zn/; tni2�1=2

D kf .zn/k
�
1 � �

1 � hf .zn/; tni2ıkf .zn/k2
�1=2�

� kf .zn/khf .zn/; tni2ıkf .zn/k2
� jhf .zn/; tnij
� 3ı:

Hence, the inequality

ˇ
ˇkznk � jhf .zn/; vijˇˇ � 4ı .b/

holds true since kznk � kf .zn/k C ı.
Two cases arise: If hf .x/; vi � 0, we put n D 0 in .b/ and use the identity .a/ to

obtain the inequality kf .x/ � I.x/k � 5ı. If hf .x/; vi < 0, then for some integer
m � 0 we must have hf .zm/; vi < 0 and hf .2zm/; vi � 0, since hI.x/; vi is positive
and I.x/ D lim

n!1 2�nf .zn/. Hence, by .b/, we get

kf .2zm/� f .zm/k � hf .2zm/; vi � hf .zm/; vi � 3kzmk � 8ı:

However, we know that kf .2zm/ � f .zm/k � kzmk C ı. Therefore, we obtain
kxk � kzmk � .9=2/ı and hence

kf .x/ � I.x/k � kf .x/k C kI.x/k � kxk C ı C kxk � 10ı;

which ends the proof. ut
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Hyers and Ulam noticed that Theorem 13.4 is not always true for non-surjective
ı-isometric transformations of one Euclidean space into another: We consider a
function f W R ! R2 defined by

f .x/ D
�
.x; 0/ .for x � 1/;

.x; c lnx/ .for x > 1/:

It is easy to present that f will be a ı-isometry if we choose c in such a way that
ı > c2max

x>1
.lnx/2=.2x � 2/. On the other hand, f cannot be approximated by any

isometry in the sense of Theorem 13.4.
D. G. Bourgin [25] further generalized this result of Hyers and Ulam and proved

the following theorem:

Assume that E1 is a real Banach space and E2 belongs to a class of uniformly
convex real Banach spaces which includes the spaces Lp.0; 1/ for p 2 .1; 2/ [
.2;1/. For each ı-isometry f W E1 ! E2 with f .0/ D 0, there exists a linear
isometry I W E1 ! E2 such that kf .x/ � I.x/k � 12ı for all x 2 E1.

Subsequently, Hyers and Ulam [140] studied a stability problem for spaces of
continuous functions:

Let S1 and S2 be compact metric spaces and let
�
C.Si /; k � k1

�
denote the space

of real-valued continuous functions on Si equipped with the metric topology. If a
homeomorphism T W C.S1/ ! C.S2/ satisfies the inequality

ˇ
ˇkT .f / � T .g/k1 � kf � gk1

ˇ
ˇ � ı (13.3)

for all f; g 2 C.S1/, then there exists an isometry I W C.S1/ ! C.S2/ such that
kT .f /� I.f /k1 � 21ı for each f 2 C.S1/.

Bourgin significantly generalized this result of Hyers and Ulam again (see [26]):

Let S1 and S2 be completely regular Hausdorff spaces and let T W C.S1/ !
C.S2/ be a surjective function satisfying the inequality (13.3) for all f; g 2 C.S1/.
Then there exists a linear isometry I W C.S1/ ! C.S2/ such that kT .f / �
I.f /k1 � 10ı for any f 2 C.S1/.

R. D. Bourgin [27] continued the study of stability problems for isometries on
finite-dimensional Banach spaces under the additional assumption that the set of
extreme points of the unit ball in E1 is totally disconnected. In 1978, P. M. Gruber
[128] obtained an elegant result as follows:

Theorem 13.5 (Gruber). Let E1 and E2 be real normed spaces. Assume that f W
E1 ! E2 is a surjective ı-isometry and I W E1 ! E2 is an isometry with f .p/ D
I.p/ for some p 2 E1. If kf .x/� I.x/k D o

�kxk� as kxk ! 1 uniformly, then I
is a surjective linear isometry and kf .x/�I.x/k � 5ı for all x 2 E1. If in addition
f is continuous, then kf .x/ � I.x/k � 3ı for all x 2 E1.

Using Theorem 13.5 and an idea from [356], J. Gevirtz [124] established the
Hyers–Ulam stability of isometries between arbitrary Banach spaces.
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Theorem 13.6 (Gevirtz). Assume that E1 and E2 are real Banach spaces. For
each surjective ı-isometry f W E1 ! E2, there exists a surjective linear isometry
I W E1 ! E2 such that kf .x/ � I.x/k � 5ı for all x 2 E1.

Proof. We introduce a lemma which will be proved in the last part of this proof:

If f W E1 ! E2 is a surjective ı-isometry, then there exist constants
A and B such that
�
�
�2f

�x0 C x1

2

�
� f .x0/� f .x1/

�
�
� � 2A

�
ıkx0 � x1k

�1=2 C 2Bı

for all x0; x1 2 E1.

.a/

Without loss of generality, we assume that f .0/ D 0. Applying .a/ with x0 D
2nC1x and x1 D 0 and dividing by 2nC1 yield

�
�2�nf .2nx/ � 2�.nC1/f

�
2nC1x

��� � 2�n=2A
�
2ıkxk�1=2 C 2�nBı .b/

for any x 2 E1 and n 2 N0. It follows from .b/ that for all m; n 2 N ,

�
�2�nf .2nx/ � 2�.nCm/f

�
2nCmx

���

�
nCm�1X

iDn

�
�2�if .2ix/ � 2�.iC1/f

�
2iC1x

���

� 2
�p
2 � 1

��1
A2�n=2�ıkxk�1=2 C 2�.n�1/Bı

! 0 as n ! 1:

Thus, f2�nf .2nx/g is a Cauchy sequence. Since E2 is complete, we can define a
function I W E1 ! E2 by (13.2). Then, we see that I.0/ D 0 and

kf .x/ � I.x/k � 2
�p
2 � 1

��1
A
�
ıkxk�1=2 C 2Bı .c/

for any x 2 E1. Obviously, kf .x/ � I.x/k=kxk ! 0 uniformly as kxk ! 1.
Since f is a ı-isometry, we get

ˇ
ˇk2�nf .2nx0/ � 2�nf .2nx1/k � kx0 � x1k

ˇ
ˇ � 2�nı

for any x0; x1 2 E1 and n 2 N . If we let n ! 1 in the preceding inequality, then
we see that I is an isometry. Moreover, f .0/ D 0 D I.0/. In view of Theorem 13.5,
I is a surjective linear isometry and kf .x/ � I.x/k � 5ı for all x 2 E1.

We now introduce some terminologies which will be used in the proof of
Lemma .a/. A function F W E2 ! E1 is called an "-inverse of f if

k.f ı F /.y/ � yk � " .d/
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for all y 2 E2. The function f is called "-onto if it has an "-inverse. Each "-onto
ı-isometry will be called an ."; ı/-isometry.

We assert that

If f W E1 ! E2 is an ."; ı/-isometry and F is an "-inverse of f ,
then F is an ."C ı; 2"C ı/-isometry.

.e/

It follows from .d/ that

k.F ı f /.x/ � xk � k.f ı F ı f /.x/ � f .x/k C ı � "C ı

for all x 2 E1, which proves that F is ."C ı/-onto. To show that F is a .2"C ı/-
isometry, let y0; y1 2 E2. Then it follows from .d/ that k.f ıF /.yi /�yik � " for
i 2 f0; 1g. Since f is a ı-isometry, we get

ˇ
ˇk.f ı F /.y0/ � .f ı F /.y1/k � kF.y0/� F.y1/k

ˇ
ˇ � ı:

Hence, we obtain

ˇ
ˇkF.y0/ � F.y1/k � ky0 � y1k

ˇ
ˇ

� ˇ
ˇkF.y0/ � F.y1/k � k.f ı F /.y0/ � .f ı F /.y1/k

ˇ
ˇ

C ˇ̌k.f ı F /.y0/ � .f ı F /.y1/k � ky0 � y1k
ˇ̌

� ı C k.f ı F /.y0/ � y0k C k.f ı F /.y1/� y1k
� ı C 2":

We assert that

Let f1 W E1 ! E2 be an ."1; ı1/-isometry and f2 W E2 ! E3 be

an ."2; ı2/-isometry. Then f2 ı f1 is an ."1 C "2 C ı2; ı1 C ı2/-

isometry.

.f /

It is immediate that f2 ı f1 is a .ı1 C ı2/-isometry. To prove that f2 ı f1 is ."1 C
"2 C ı2/-onto, let Fi be an "i -inverse of fi .i 2 f0; 1g/ and let z 2 E3, where E3 is
a real Banach space. Then we have

k.f2 ı f1 ı F1 ı F2/.z/� zk
� k.f2 ı f1 ı F1 ı F2/.z/ � .f2 ı F2/.z/k C k.f2 ı F2/.z/ � zk
� k.f2 ı f1 ı F1 ı F2/.z/ � .f2 ı F2/.z/k C "2

� k.f1 ı F1 ı F2/.z/� F2.z/k C ı2 C "2

� "1 C ı2 C "2:
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We will now prove .a/. Let x0; x1 2 E1, yi D f .xi / .i 2 f0; 1g/, p D
.1=2/.x0 C x1/, and q D .1=2/.y0 C y1/. First, we will assume that y0 ¤ y1.
Since f is a .0; ı/-isometry, due to .e/, f has a 0-inverse F which is a .ı; ı/-
isometry and for which F.yi / D xi .i 2 f0; 1g/. We define sequences fgkg and
fGkg of functions of E2 into E2 with the following properties:

gk is a
�
4kC1ı; 4kC1ı

�
-isometry and gk.yi / D y1�i ; .g/

Gk is a 4kC1ı-inverse of gk and Gk.yi / D y1�i .h/

for i 2 f0; 1g. Set g0.y/ D f
�
2p�F.y/� for all y 2 E2. Then, g0 D f1ıf2, where

f1 D f is a .0; ı/-isometry and f2.y/ D 2p�F.y/ is a .ı; ı/-isometry. In view of
.f /, g0 is a .2ı; 2ı/-isometry and it permutes y0 and y1. Thus, .g/ is true for k D 0.
LetG0 be any function satisfying .h/ for k D 0. Now, let g1.y/ D G1.y/ D 2q�y
for any y 2 E2. Obviously, .g/ and .h/ are satisfied for k D 1. Finally, assuming
that we have g0; : : : ; gn and G0; : : : ; Gn which satisfy the stipulated conditions,
we define gnC1 D gn�1 ı gn ı Gn�1. Then, gn�1 is a .4nı; 4nı/-isometry, gn is
a .4nC1ı; 4nC1ı/-isometry, and Gn�1 is a 4nı-inverse of gn�1. In view of .e/, we
know thatGn�1 is a .2 �4nı; 3 �4nı/-isometry. Hence, it follows from .f / that gnC1
is a .3 � 4nC1ı; 2 � 4nC1ı/-isometry. Moreover, gnC1 permutes y0 and y1. Therefore,
gnC1 satisfies .g/ with k D nC1. Now,GnC1 is taken to be any function satisfying
.h/ with k D nC 1.

We next define a sequence fang of points of E2 recursively by a1 D q and
anC1 D gn�1.an/ for n 2 N . Let d D .1=2/ky0 � y1k. Denoting by B.y; r/ the
closed ball of radius r and center y yields

gk
�
B.yi ; r/

� � B
�
y1�i ; r C 4kC1ı

�
:

Since a1 2 B.y0; d /\B.y1; d / and an D .gn�2 ı gn�3 ı � � � ı g0/.a1/, successive
application of this inclusion with k 2 f0; 1; : : : ; n � 2g yields

an 2 B.y0; d C 4nı/ \ B.y1; d C 4nı/ � B.q; d C 4nı/:

Since the diameter of the last ball is 2.d C 4nı/, we conclude that

kan � an�1k � 2.d C 4nı/ .i/

for all integers n � 2.
We now prove that

kgn.y/ � yk � 2kan � yk � 2.4n � 1/ı .j /

for any y 2 E2 and n 2 N . Since g1.y/ D 2q�y and a1 D q, .j / is true for n D 1.
Assuming that .j / is true for some n 2 N , it follows from .g/, .h/, and .j / that
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kgnC1.y/ � yk
D k.gn�1 ı gn ıGn�1/.y/ � yk
� k.gn�1 ı gn ıGn�1/.y/ � .gn�1 ıGn�1/.y/k

� k.gn�1 ıGn�1/.y/� yk
� k.gn�1 ı gn ıGn�1/.y/ � .gn�1 ıGn�1/.y/k � 4nı

� k.gn ıGn�1/.y/ �Gn�1.y/k � 2 � 4nı
� 2kan �Gn�1.y/k � .4nC1 � 2/ı

� 2
�kgn�1.an/� .gn�1 ıGn�1/.y/k � 4nı

�� .4nC1 � 2/ı
� 2

�kanC1 � yk � 2 � 4nı� � .4nC1 � 2/ı

D 2kanC1 � yk � 2.4nC1 � 1/ı;

which proves the validity of .j / for all y 2 E2 and n 2 N .
It follows from .j / that

kanC1 � ank D kgn�1.an/ � ank � 2kan � an�1k � 2 � 4n�1ı;

which by induction gives

kan � an�1k � 2n�2ka2 � a1k � 4n�1ı:

Together with .i/, this implies that ka2 � a1k is bounded above by

ka2 � a1k � 2
�
2�.n�2/d C 18ı2n�2� .k/

for all integers n � 2.
On the other hand, since F is a 0-inverse of f , we have

ka2 � a1k D �
�f
�
2p � F.q/

� � q��
D �
�f
�
2p � F.q/

� � .f ı F /.q/��
� 2kp � F.q/k � ı

� 2
�kf .p/ � .f ı F /.q/k � ı� � ı

D 2kf .p/ � qk � 3ı:

Hence, it follows from .k/ that

kf .p/ � qk � 2�.n�2/d C 18ı2n�2 C 2ı .l/

for every integer n � 2.
For the moment, we assume that d > 18ı and let t satisfy 2�td D 18ı2t , i.e.,

t D .ln 4/�1 ln.d=18ı/ > 0. If we let n � 2 D Œt �, the greatest integer less than or
equal to t , then it follows from .l/ that
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kf .p/ � qk � 2d2�t C 18ı2t C 2ı

D 3d2�t C 2ı

D 3.18ıd/1=2 C 2ı

� 10
�
ıkx0 � x1k

�1=2 C 2ı;

since kx0 � x1k � ky0 � y1k � ı D 2d � ı � .35=18/d .
On the other hand, if d � 18ı (which covers the case y0 D y1 that was excluded

at the beginning of the proof), then ky0 � y1k � 36ı and so kx0 � x1k � 37ı.
Thus, kxi � pk � 19ı and, consequently, kyi � f .p/k � 20ı .i 2 f0; 1g/. Since
q D .1=2/.y0 C y1/, we have

kf .p/ � qk � .1=2/kf .p/� y0k C .1=2/kf .p/� y1k � 20ı:

Therefore, in either case, we conclude that

kf .p/ � qk � 10
�
ıkx0 � x1k

�1=2 C 20ı;

which proves the validity of .a/. ut
Moreover, M. Omladič and P. Šemrl [259] obtained a sharp stability result for

ı-isometries. The proof of the theorem of Omladič and Šemrl depends on the fol-
lowing lemma which is an extension of [237, Lemma 3].

Lemma 13.7. Let E1 and E2 be real Banach spaces. Assume that f W E1 ! E2 is
a surjective ı-isometry and that n is a positive integer. If there exist x1; : : : ; xn 2 E1
such that f .xi / ¤ f .xj / for i ¤ j , then for any sufficiently small 
 > 0 there exists
a bijective function g W E1 ! E2 such that kf .x/ � g.x/k � 
 for all x 2 E1 and
f .xi / D g.xi / for i 2 f1; : : : ; ng.

Proof. First, we prove that cardE1 D cardE2. Because f is surjective, it holds true
that cardE1 � cardE2. To show the converse inequality, it suffices to prove that the
density character of E1 is not larger than that of E2, where the density character of
E1 is the least cardinality of a dense subset ofE1. Let � be such that �.t/ � t=2 for
all t � � , where we define

�.t/ D sup
˚ˇˇkf .x/ � f .y/k � kx � ykˇˇ ˇˇ kx � yk � t or kf .x/ � f .y/k � t

�

for all t � 0. It then follows that kf .x/ � f .y/k � �=2 whenever kx � yk � � .
Let A be a maximal subset of E1 such that kx � yk � � for every x; y 2 A with
x ¤ y. The density character of E1 is equal to the cardinality of A and, since
kf .x/ � f .y/k � �=2 for all x; y 2 A with x ¤ y, this cardinal is not larger than
the density character of E2.

Now, let

E2 D E21 [ � � � [ E2n [
[

˛

E2˛;
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where the sets E21; : : : ; E2n; E2˛ are pairwise disjoint and such that

(i) the diameter of each of them is not larger than the given real number 
 > 0,
(ii) their cardinalities are equal to the cardinality of E2,

(iii) f .xi / 2 E2i for all i 2 f1; : : : ; ng.

Define E1i D f �1.E2i / and E1˛ D f �1.E2˛/ for all i 2 f1; : : : ; ng and ˛.
Then, it follows from .ii/ that cardE1i D cardE2i for any i 2 f1; : : : ; ng and
cardE1˛ D cardE2˛ for all ˛. Consequently, we can find bijective functions gi W
E1i ! E2i and g˛ W E1˛ ! E2˛ such that gi .xi / D f .xi /. If we define a function
g W E1 ! E2 by

g.x/ D
�
gi .x/ .for x 2 E1i /;
g˛.x/ .for x 2 E1˛/;

then .i/ and .iii/ yield the desired properties for g. ut
Using ideas from [124], Omladič and Šemrl [259] proved that the upper bound

5ı in Theorem 13.6 can be replaced with 2ı.

Theorem 13.8 (Omladič and Šemrl). Let E1 and E2 be real Banach spaces.
If f W E1 ! E2 is a surjective ı-isometry and f .0/ D 0, then there exists a unique
surjective linear isometry I W E1 ! E2 such that

kf .x/ � I.x/k � 2ı (13.4)

for each x 2 E1.

Proof. Choose x; y 2 E1 and assume that f .x/, f .y/, and f
�
.x C y/=2

�
are

distinct. If " is a constant larger than ı, then Lemma 13.7 implies that there exists
a bijective function g W E1 ! E2 such that g.x/ D f .x/, g.y/ D f .y/, g

�
.x C

y/=2
� D f

�
.xCy/=2�, and kf .u/�g.u/k � .1=2/."�ı/ for all u 2 E1. Obviously,

g is an "-isometry.
Let us define a sequence of bijective functions hn W E2 ! E2 by

h0.u/ D g
�
x C y � g�1.u/

�
;

h1.u/ D g.x/C g.y/ � u;

hn D hn�2 ı hn�1 ı h�1
n�2

for all integers n � 2. We also define a sequence of bijective functions

kn D hn ı hn�1 ı � � � ı h0
for any n 2 N0. Moreover, we define a sequence fang recursively by

a1 D .1=2/
�
f .x/C f .y/

�
and anC1 D hn�1.an/ D kn�1.a1/

for every n 2 N .
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According to the second part of the proof of Theorem 13.6, we can prove that
there exist sequences fpng, fqng, frng, and fsng of nonnegative real numbers such
that:

(i) hn is a .pn"/-isometry for all n 2 N0;
(ii) kn is a .qn"/-isometry for all n 2 N0;

(iii) khn.u/� uk � 2kan � uk � rn" for any u 2 E2 and n 2 N;

and moreover
ka2 � a1k � 2�.n�2/kan � an�1k C sn" .a/

for any integer n � 2.
As in [124], we can apply .i/, .ii/, .iii/, and .a/ to prove that

�
�
�2f

�x C y

2

�
� f .x/ � f .y/

�
�
� � 2�.n�2/kx � yk C 2.nC 2/ı .b/

for all n 2 N . It is not difficult to see that .b/ is true also when f .x/, f .y/, and
f
�
.x C y/=2

�
are not distinct.

It follows from .b/ that

I.x/ D lim
n!1 2�nf .2nx/

exists for all x 2 E1 and that I is a linear isometry. It also implies that

kf .x/ � I.x/k � 2.r C 3/ı C 2�rC3kxk .c/

for any x 2 E1 and r 2 N .
We will now prove that I is surjective. Suppose to the contrary that the range of

I is a proper subspace of E2. As it is closed, there exists a z 2 E2 of norm one such
that its distance to the range of I is larger than 1=2. The surjectivity of f implies the
existence of xt 2 E1 with f .xt / D tz for any t > 0. Recall that f is a ı-isometry
with f .0/ D 0 and observe that

ˇ̌kf .xt /k � kxtk
ˇ̌ � ı yields t � ı � kxtk � t C ı.

Thus, we have

kf .xt / � I.xt /k D tkz � .1=t/I.xt/k > t=2 .d/

for every t > 0 since .1=t/I.xt / belongs to the range of I . On the other hand, .c/
implies that

kf .xt /� I.xt /k � 2.r C 3/ı C 2�rC3kxtk
� 2.r C 3/ı C 2�rC3.t C ı/ (e)

for all t > 0 and r 2 N . Combining .d/ and .e/ yields

t=2 < 2.r C 3/ı C 2�rC3.t C ı/
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for any t > 0 and r 2 N . If we set t D r2 and then let r ! 1, then we get a
contradiction. Hence, I has to be surjective.

Now, we define a function T W E1 ! E1 by T D I�1 ı f . Obviously, T is a
surjective ı-isometry with T .0/ D 0. Thus, we obtain

ˇ
ˇkT .x/k � kxkˇˇ � ı .f /

for all x 2 E1. By .c/, we have

kT .x/�xk D �
�I�1�f .x/

��x�� D kf .x/� I.x/k � 2.rC3/ıC2�rC3kxk .g/

for all x 2 E1 and r 2 N .
We now assert that

kT .x/� xk � 2ı .h/

for each x 2 E1. Choose an x 2 E1 satisfying kT .x/ � xk D a > 0 and set y D
.1=a/

�
T .x/�x�. Then, we have kyk D 1. As T is surjective, we can find a zn 2 E1

for every n 2 N such that T .xCzn/ D xCayCny. Since n D kT .xCzn/�T .x/k
and T is a ı-isometry, we conclude that

n � ı � kznk � nC ı .i/

for any n 2 N .
If we replace x in .g/ with x C zn and divide the resulting inequality by n, then

we get

k.1=n/ay C y � .1=n/znk � .1=n/
�
2.r C 3/ıC 2�rC3.kxk C nC ı/

�
:

We put r D �p
n
�

and let n ! 1 in the last inequality, where Œw� denotes the
largest integer not exceeding w, then .i/ gives

lim
n!1

�
1=kznk�zn D y: .j /

Let q be a real number and define

	 D lim sup
n!1

�kx C znk � kznk�:

It now follows from .i/ that 1 � q=kznk > 0 if n is large enough. For such integers
n, it holds true that

kx C znk � kznk C q D �
�x C �

q=kznk�zn C �
1 � q=kznk�zn

�
�

� ���1 � q=kznk�zn
�
�

� �
�x C �

q=kznk�zn
�
�:
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This implies together with .j / that

	C q � kx C qyk

for any q 2 R. Similarly, we obtain

	C q � lim sup
n!1

�
� �
�x C �

q=kznk�zn
�
�
�

D �kx C qyk

for each q 2 R. Consequently, we have

j	C qj � kx C qyk .k/

for every q 2 R.
We will have to consider two special cases. First, we deal with the situation when

x and y are linearly independent. Let us define a functional ' on the linear span of
x and y by '.x/ D 	 and '.y/ D 1. It then follows from .k/ that k'k D 1. If we
substitute x C zn for x in .f /, then it follows from .k/ that

ı � kx C ay C nyk � kx C znk
� j	C a C nj � kx C znk
� 	C nC a � kx C znk

for each n 2 N . Applying .i/ to the last inequality, we see that

ı � 	 � kx C znk C .nC ı/C a � ı � 	 � �kx C znk � kznk�C a � ı
which together with the definition of 	 implies that 2ı � a � 0. This ends the proof
of .h/ in the case that x and y are linearly independent.

Assume now that x D �y for some � 2 R. In view of .k/, we have j	C qj �
j�C qj for any q 2 R. If we put q D �� in the last inequality, then we get 	 D �.
If an integer n is large enough, then kxC ayCnyk D 	C aCn. For such integers
n, substituting x C zn for x in .f / and considering .i/ and the definition of 	 yield

ı � kx C ay C nyk � kx C znk
D a C 	 � �kx C znk � kznk�C n � kznk
� a � ı;

i.e., a � 2ı, which proves the validity of .h/ in the case that x and y are linearly
dependent.

Since I is a surjective isometry with I.0/ D 0, it follows from .h/ that

kf .x/ � I.x/k D kT .x/ � xk � 2ı



13.2 Stability on a Restricted Domain 301

for all x 2 E1. If I 0 W E1 ! E2 is another surjective linear isometry satisfying
I 0.0/ D 0 as well as (13.4), then we obtain

k2�mf .2mx/ � I 0.x/k � 2�.m�1/ı

for all x 2 E1 and m 2 N . If we let m ! 1, then we get I D I 0. ut
Moreover, Omladič and Šemrl presented that the inequality (13.4) is sharp by

constructing the following example. Define a surjective function f W R ! R by

f .x/ D
� �3x .for x 2 Œ0; 1=2�/;
x � 1 .for x 62 Œ0; 1=2�/:

Obviously, f is a 1-isometry. In view of Theorem 13.8, f can be approximated by a
linear isometry I W R ! R. There are only two linear isometries, namely, I.x/ D x

and I.x/ D �x. However, the second one does not approximate f uniformly and
we can easily show that

max
x2R

jf .x/ � xj D 2;

which proves that the inequality (13.4) is sharp in the one-dimensional case.
On the other hand, G. Dolinar [94] investigated the stability of isometries in

connection with ."; p/-isometry, where a function f W E1 ! E2 is called an ."; p/-
isometry if f satisfies the inequality

ˇ
ˇkf .x/ � f .y/k � kx � ykˇˇ � " kx � ykp

for some " � 0 and for all x; y 2 E1:

Let E1 andE2 be real Banach spaces and let 0 � p < 1. There exists a constant
N.p/, independent of E1 and E2, such that for each surjective ."; p/-isometry f W
E1 ! E2 with f .0/ D 0 there exists a surjective isometry I W E1 ! E2 satisfying

kf .x/ � I.x/k � "N.p/kxkp
for all x 2 E1.

He also proved the superstability of isometries. Indeed, it was proved that for
p > 1 every surjective ."; p/-isometry f W E1 ! E2 from a finite-dimensional real
Banach space E1 onto a finite-dimensional real Banach space E2 is an isometry.

For more general information on the Hyers–Ulam stability of isometries and re-
lated topics, refer to [21, 154, 237, 297, 305, 307, 328, 338, 350, 352, 355].

13.2 Stability on a Restricted Domain

Let m � 1 be an integer. For each E � Rm, H.E/ denotes the smallest flat con-
taining E , i.e.,

H.E/ D ˚
	0p0 C � � � C 	mpm j p0; : : : ; pm 2 EI 	0; : : : ; 	m 2 RI
	0 C � � � C 	m D 1

�
:
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For any integer k 2 f1; : : : ; mg, the points p0; : : : ; pk 2 Rm are called independent
if H.p0; : : : ; pk/ is k-dimensional. We use the notation d.x;E/ for the Euclidean
distance between the point x and the subset E of Rm.

In 1981, J. W. Fickett [103] proved the following lemma and applied it to the
proof of the Hyers–Ulam stability of isometries defined on a bounded domain.

Lemma 13.9. Let p0; : : : ; pm�1 be independent points in Rm, where m � 2 is an
integer. Define H D H.p0; : : : ; pm�2/ and let pm be any point of Rm satisfying
d.pm;H/ � d.pm�1;H/. Define di D jpm � pi j for every i 2 f0; : : : ; m � 2g.
Suppose that 0 � di � 1 for i 2 f0; : : : ; m�2g, and that dm�1 and " are given withˇ
ˇdm�1�jpm�pm�1j

ˇ
ˇ � " and 0 < " � 1. If there exists a point q with jq�pi j D di

for i 2 f0; : : : ; m � 1g, then there exists such a q with jpm � qj � 2
p
" .

For a given integer n � 2, let S be a bounded subset of Rn and let f W S ! Rn

be a ı-isometry. Fickett [103] introduced a construction of isometry I W S ! Rn

which is quite different from the (direct) method of Hyers and Ulam:

(i) We extend the domain S of f to S , the closure of S . For any s 2 S nS , we
define f1.s/ to be any element of the set

1\

mD1
f
�fy 2 S j d.s; y/ < 1=mg�;

and let f1.s/ D f .s/ for s 2 S . Then it is easy to show that f1 is again a
ı-isometry.

(ii) Let k be the dimension of H.S/ and choose s0; : : : ; sk 2 S to satisfy

js0 � s1j D diameter of S;
d
�
si ;H.s0; : : : ; si�1/

� D sup
˚
d
�
s;H.s0; : : : ; si�1/

� ˇˇ s 2 S� (13.5)

for each i 2 f2; : : : ; kg. Note that s0; : : : ; sk are independent.
(iii) We define

I.s0/ D f1.s0/;

I.si / D a point as close as possible to f1.si / satisfying

jI.si /� I.sj /j D jsi � sj j for 0 � j � i � k; (13.6)

I.s/ D the unique point in H
�
I.s0/; : : : ; I.sk/

�
satisfying

jI.s/� I.si /j D js � si j for i 2 f0; : : : ; kg:

For an S � Rn, diamS denotes the diameter of S . Moreover, we define

K0.ı/ D K1.ı/ D ı; K2.ı/ D 3
p
3ı ; Ki .ı/ D 27ı2

1�i

for all integers i � 3.
J. W. Fickett [103] proved the Hyers–Ulam stability of isometries on a

bounded domain.



13.2 Stability on a Restricted Domain 303

Theorem 13.10 (Fickett). Let S be a bounded subset of Rn and let f W S ! Rn

be a ı-isometry, where 0 � Kn.ı=diamS/ � 1=3. Then the isometry I W S ! Rn

constructed by the preceding steps satisfies

jf .s/ � I.s/j � KnC1.ı=diamS/ � diamS

for all s 2 S .

Proof. By a homothety argument, we can reduce the general case to the case where
diamS D 1. By induction on m, we prove that if t0; : : : ; tm 2 S , with t0; : : : ; tm�1
independent, satisfy

d
�
ti ;H.t0; : : : ; ti�1/

� � d
�
tj ;H.t0; : : : ; ti�1/

�
.a/

for all integers i; j with 1 � i � j � m, and if h W ft0; : : : ; tmg ! Rn is defined
inductively by

h.ti / D a point as close as possible to f1.ti / satisfying
jh.ti /� h.tj /j D jti � tj j for 0 � j � i � m;

then

jh.ti /� f1.ti /j � Km.ı/

for each integer i 2 f0; : : : ; mg.
This claim is true form 2 f0; 1g. Letm � 2. We assume that the claim is true for

m-point sets, and let t0; : : : ; tm, and h be as described. Then t0; : : : ; tm�2; tm�1 and
t0; : : : ; tm�2; tm each satisfy an m-point version of .a/.

For i 2 f0; : : : ; m � 1g, we define h1.ti / D h.ti / and

h1.tm/ D a point as near as possible to f1.tm/ satisfying
jh1.tm/ � h1.ti /j D jtm � ti j for i 2 f0; : : : ; m � 2g:

Note that h1.tm/ is in H
�
h.t0/; : : : ; h.tm/

�
. By the induction hypothesis, we have

jh1.ti /� f1.ti /j � Km�1.ı/

for any i 2 f0; : : : ; mg. Hence, we get

ˇ
ˇjh1.tm�1/� h1.tm/j � jtm�1 � tmjˇˇ � ı C 2Km�1.ı/ � 3Km�1.ı/:

We now apply Lemma 13.9 with p0; : : : ; pm, dm�1, ", and Rm there equal to
h1.t0/; : : : ; h1.tm/, jtm � tm�1j, 3Km�1.ı/, and H

�
h.t0/; : : : ; h.tm/

�
to get a q 2

H
�
h.t0/; : : : ; h.tm/

�
with jq � h.ti /j D jtm � ti j for each i 2 f0; : : : ; m � 2g and

jq � h1.tm/j � 2
�
3Km�1.ı/

�1=2
. Thus,
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jf1.tm/ � h.tm/j � jf1.tm/� qj
� jf1.tm/� h1.tm/j C jh1.tm/ � qj
� Km�1.ı/C 2

�
3Km�1.ı/

�1=2

� Km.ı/;

which ends the proof of our first claim.
Now, let s 2 S be arbitrary. By (13.5) and (13.7), we may apply the preceding

steps with m D k C 1, t0 D s0; : : : ; tk D sk , tm D s, and h D I to conclude that

jI.s/� f1.s/j � KkC1.ı/ � KnC1.ı/

for all s 2 S . ut
Let .G;C/ be an abelian metric group with a metric d.�; �/ satisfying

d.x C z; y C z/ D d.x; y/ and d.2x; 2y/ D 2d.x; y/ (13.7)

for all x; y; z 2 G. Moreover, we assume that for any given y 2 G the equation

x C x D y

is uniquely solvable. We here promise that 2�1y or y=2 stands for the unique so-
lution of the above equation and we inductively define 2�.nC1/y D 2�1�2�ny

�
for

each y 2 G and n 2 N . We may usually write 2�nx instead of x=2n for each x 2 G
and n 2 N . The second condition in (13.7) also implies that

d.x=2; y=2/ D .1=2/d.x; y/

for all x; y 2 G.
S.-M. Jung [178] applied a direct method and proved the Hyers–Ulam stability

of isometries on a restricted domain.

Theorem 13.11. Let E be a subset of G with the property that

0 2 E and 2kx 2 E for all x 2 E and k 2 N

and letF be a real Hilbert space with the associated inner product h�; �i. If a function
f W E ! F satisfies the inequality

ˇ
ˇkf .x/ � f .y/k � d.x; y/

ˇ
ˇ � "d.x; y/p

for some " � 0, 0 � p < 1 and for all x; y 2 E , then there exists an isometry
I W E ! F that satisfies

kf .x/ � I.x/ � f .0/k
� 2.1�p/=2

2.1�p/=2 � 1
max

˚p
4:5"; 2"

�
max

˚
d.x; 0/p; d.x; 0/.1Cp/=2� (13.8)

for all x 2 E . For 0 < p < 1, the isometry I is uniquely determined.



13.2 Stability on a Restricted Domain 305

Proof. If we define a function g W E ! F by g.x/ D f .x/ � f .0/, then we have

ˇ̌kg.x/ � g.y/k � d.x; y/
ˇ̌ � "d.x; y/p .a/

for any x; y 2 E . With y D 0 and y D 2x separately, the inequality .a/ together
with (13.7) yields

ˇ
ˇkg.x/k � d.x; 0/ˇˇ � "d.x; 0/p;
ˇ
ˇkg.x/ � g.2x/k � d.x; 0/

ˇ
ˇ � "d.x; 0/p;

(b)

respectively.
It follows from .b/ that

A.x/2 � kg.x/k2 � �
d.x; 0/C "d.x; 0/p

�2
.c/

and

kg.x/ � g.2x/k2D kg.x/k2 C kg.2x/k2 � 2hg.x/; g.2x/i

� �
d.x; 0/C "d.x; 0/p

�2
; (d)

where we set

A.x/ D
(
0 .for d.x; 0/ � "1=.1�p//;
d.x; 0/� "d.x; 0/p .for d.x; 0/ > "1=.1�p//:

If d.x; 0/ > .1=2/"1=.1�p/, then A.2x/ D d.2x; 0/ � "d.2x; 0/p and A.2x/2 �
kg.2x/k2. Hence, it follows from (13.7), .c/, and .d/ that

2kg.x/ � .1=2/g.2x/k2

D 2kg.x/k2 C .1=2/kg.2x/k2 � 2hg.x/; g.2x/i
D kg.x/k2 C �kg.x/k2 C kg.2x/k2 � 2hg.x/; g.2x/i� � .1=2/kg.2x/k2

� 2
�
d.x; 0/C "d.x; 0/p

�2 � .1=2/�d.2x; 0/� "d.2x; 0/p�2

D 4"
�
1C 2p�1�d.x; 0/1Cp C 2"2

�
1 � 22.p�1/�d.x; 0/2p

D �
4C 2pC1 C 2"d.x; 0/p�1�1 � 22.p�1/��"d.x; 0/1Cp

<
�
4C 2pC1 C 22�p�1 � 22.p�1/��"d.x; 0/1Cp

� 9"d.x; 0/1Cp:
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On the other hand, for d.x; 0/ � .1=2/"1=.1�p/, it analogously follows from .c/

and .d/ that

2kg.x/ � .1=2/g.2x/k2 � 2
�
d.x; 0/C "d.x; 0/p

�2 � 8"2d.x; 0/2p:

Hence, we have

kg.x/ � .1=2/g.2x/k � C max
˚
d.x; 0/p; d.x; 0/.1Cp/=2� .e/

for all x 2 E , where we set C D max
˚p
4:5"; 2"

�
.

The last inequality implies the validity of the inequality

kg.x/ � 2�ng.2nx/k � C max
˚
d.x; 0/p; d.x; 0/.1Cp/=2�

n�1X

iD0
2�i.1�p/=2 .f /

for n D 1. Assume now that the inequality .f / is true for some n 2 N . It then
follows from (13.7), .e/, and .f / that

�
�g.x/ � 2�.nC1/g

�
2nC1x

���

� kg.x/ � 2�ng.2nx/k C �
�2�ng.2nx/ � 2�.nC1/g

�
2nC1x

���

� C max
˚
d.x; 0/p; d.x; 0/.1Cp/=2�

n�1X

iD0
2�i.1�p/=2

C 2�nC max
˚
d.2nx; 0/p; d.2nx; 0/.1Cp/=2�

� C max
˚
d.x; 0/p; d.x; 0/.1Cp/=2�

nX

iD0
2�i.1�p/=2;

which implies the validity of .f / for all x 2 E and n 2 N .
For givenm; n 2 N with n > m, we use (13.7) and .f / to verify

k2�mg.2mx/ � 2�ng.2nx/k
D 2�m��g.2mx/ � 2�.n�m/g.2n�m � 2mx/��

� C max
˚
d.x; 0/p; d.x; 0/.1Cp/=2�

n�1X

iDm
2�i.1�p/=2

! 0 as m ! 1:

Thus, f2�ng.2nx/g is a Cauchy sequence for any x 2 E . Let us define a function
I W E ! F by

I.x/ D lim
n!1 2�ng.2nx/: .g/
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If we substitute 2nx and 2ny for x and y in .a/, divide the resulting inequality
by 2n; and consider the case that n goes to infinity, then we see that I is an isometry.
The inequality .f /, together with .g/, presents that the inequality (13.8) holds true
for any x 2 E .

Assume now that 0 < p < 1 and I 0 W E ! F is an isometry satisfying the
inequality (13.8). Based on our assumption p > 0, it then follows from (13.8) that
I 0.0/ D 0. Since

kI 0.x/ � I 0.y/k D d.x; y/

for all x; y 2 E , it follows from (13.7) that

kI 0.2x/ � I 0.x/k D d.2x; x/ D d.x; 0/ D kI 0.x/k

and

kI 0.2x/k D d.2x; 0/ D 2d.x; 0/ D 2kI 0.x/k:
Hence, we have

kI 0.2x/ � I 0.x/k2 D kI 0.2x/k2 � 2hI 0.2x/; I 0.x/i C kI 0.x/k2 D kI 0.x/k2:

Thus, we get

kI 0.2x/kkI 0.x/k D hI 0.2x/; I 0.x/i;

i.e.,

I 0.2x/ D 2I 0.x/ .h/

for any x 2 E . Assume that

2�kI 0�2kx
� D I 0.x/ .i/

for all x 2 E and some k 2 N . Then, by .h/ and .i/, we obtain

2�.kC1/I 0�2kC1x
� D 2�kI 0�2kx

� D I 0.x/;

which implies that, for 0 < p < 1, the equality .i/ is true for all x 2 E and all
k 2 N .

For some 0 < p < 1 and for an arbitrary x 2 E , it follows from (13.8) and .i/
that

kI.x/ � I 0.x/k D 2�k��I
�
2kx

� � I 0�2kx
���

� 1

2k
2 � 2.1�p/=2

2.1�p/=2 � 1C max
˚
d.2kx; 0/p; d.2kx; 0/.1Cp/=2�
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� 2�k.1�p/=2 2.3�p/=2

2.1�p/=2 � 1
C max

˚
d.x; 0/p; d.x; 0/.1Cp/=2�

! 0 as k ! 1:

This implies the uniqueness of I for the case 0 < p < 1. ut
It would be interesting to compare the previous theorem with [335, Theorem 1]

because the function f involved in Theorem 13.11 is a kind of asymptotic isometry.
The following corollary may be proven by use of Theorem 13.11 or in a straight
forward manner. Indeed, it is an immediate consequence of [335, Proposition 4].

Corollary 13.12. Let G and F be a real normed space and a real Hilbert space,
respectively. Assume that a function f W G ! F satisfies f .0/ D 0 and f

�
2kx

� D
2kf .x/ for all x 2 G and k 2 N . The function f is a linear isometry if and only
if there exists a 0 < p < 1 such that

ˇ
ˇkf .x/ � f .y/k � kx � ykˇˇ D O

�kx � ykp�

as kxk ! 1 and kyk ! 1.

Jung [178] also proved the Hyers–Ulam stability of isometries on a restricted
domain for the case p > 1.

Theorem 13.13. Let E be a subset of G with the property that

0 2 E and 2�kx 2 E for all x 2 E and k 2 N

and letF be a real Hilbert space with the associated inner product h�; �i. If a function
f W E ! F satisfies the inequality

ˇ
ˇkf .x/ � f .y/k � d.x; y/

ˇ
ˇ � "d.x; y/p

for some " � 0, p > 1, and for all x; y 2 E , then there exists a unique isometry
I W E ! F such that

kf .x/ � I.x/� f .0/k
� 2.p�1/=2

2.p�1/=2 � 1
max

˚
2
p
"; 2"

�
max

˚
d.x; 0/p; d.x; 0/.1Cp/=2�

for any x 2 E .

Corollary 13.14. Let G and F be a real normed space and a real Hilbert space,
respectively. Suppose a function f W G ! F satisfies f .0/ D 0 and f

�
2kx

� D
2kf .x/ for all x 2 G and k 2 N . The function f is a linear isometry if and only
if there exists a p > 1 such that
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ˇ
ˇkf .x/ � f .y/k � kx � ykˇˇ D O

�kx � ykp�

as kxk ! 0 and kyk ! 0.

For more general information on this subject, we refer the reader to [176, 188].

13.3 Fixed Point Method

Recently, Cădariu and Radu [57] applied the fixed point method to the proof of the
Hyers–Ulam stability of the Cauchy additive functional equation. Using their idea,
S.-M. Jung could present a short and simple proof for the Hyers–Ulam–Rassias
stability of isometries whose domain is a normed space and range is a Banach space
in which the parallelogram law holds true (see [182]).

Theorem 13.15 (Jung). Let E1 be a normed space over K and let E2 be a Banach
space over K in which the parallelogram law holds true. Assume that ı W E1 !
Œ0;1/ is an even function such that there exists a constant L, 0 < L < 1, with

8
ˆ̂<

ˆ̂
:

ı.2x/ � 2L2ı.x/ .for all x 2 E1/;
kxk � L2ı.x/ .for all x 2 E1 with kxk < 1/;
kxk � L2ı.x/ .for all x 2 E1 with kxk � 1/;

(13.9)

and that

lim
n!1 2�nı.2nx/ D 0 (13.10)

for all x 2 E1. If a function f W E1 ! E2 satisfies

ˇ
ˇkf .x/ � f .y/k � kx � ykˇˇ � ı.x � y/ (13.11)

for all x; y 2 E1, then there exists an isometry I W E1 ! E2 such that

kf .x/ � f .0/ � I.x/k � 1C L2

1 �L  .x/ (13.12)

for all x 2 E1, where

 .x/ D
( �
1=

p
1C 2L2

��kxk C ı.x/
�

.for kxk < 1/;
.1=L/

pkxkı.x/ .for kxk � 1/:

The I is the unique isometry satisfying (13.12) and I.2x/ D 2I.x/ for any x 2 E1.

Proof. First, we will prove that

 .2x/ � 2L .x/ .a/
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for all x 2 E1. If kxk � 1, then .a/ immediately follows from the first condition of
(13.9). If kxk < 1=2, then the first and second conditions of (13.9) imply that

2L .x/� .2x/ � 2.1� L/p
1C 2L2

�
Lı.x/� kxk� � 2.1� L/p

1C 2L2

�
L2ı.x/� kxk� � 0:

Now, let 1=2 � kxk < 1, i.e., k2xk � 1. It then follows from the first two conditions
of (13.9) that

1

4L2
 .2x/2 D 1

4L2
1

L2
k2xkı.2x/

� 1

L2
kxkı.x/

D 1

L2
�
1C 2L2

�kxkı.x/C 2

1C 2L2
kxkı.x/

� 1

1C 2L2
ı.x/2 C 2

1C 2L2
kxkı.x/

� 1

1C 2L2

�kxk C ı.x/
�2

D  .x/2

for all x 2 E1.
Let us define

X D ˚
h W E1 ! E2 j h.0/ D 0

�

and introduce a generalized metric on X as follows:

d.h1; h2/ D inf
˚
C 2 Œ0;1�

ˇ
ˇ kh1.x/ � h2.x/k � C .x/ for all x 2 E1

�
:

Then, it is easy to prove that .X; d/ is a generalized complete metric space (see
the proof of [189, Theorem 3.1] or [57, Theorem 2.5]). We now define an operator
ƒ W X ! X by

.ƒh/.x/ D .1=2/h.2x/

for all h 2 X and x 2 E1.
We assert that ƒ is a strictly contractive operator. Given h1; h2 2 X , let C 2

Œ0;1� be an arbitrary constant with d.h1; h2/ � C . From the definition of d , it
follows that

kh1.x/ � h2.x/k � C .x/

for each x 2 E1. By the last inequality and .a/, we have

k.ƒh1/.x/� .ƒh2/.x/k D .1=2/kh1.2x/� h2.2x/k � .1=2/C .2x/ � CL .x/

for all x 2 E1. Hence, it holds true that d.ƒh1; ƒh2/ � CL, i.e., d.ƒh1; ƒh2/ �
Ld.h1; h2/ for any h1; h2 2 X .
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If we set g.x/ D f .x/ � f .0/ for any x 2 E1, then it follows from (13.11) that

ˇ
ˇkg.x/ � g.y/k � kx � ykˇˇ � ı.x � y/ .b/

for all x; y 2 E1.
Now, we can apply the parallelogram law to the parallelogram

�
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�
�
�
�
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�

�

�

�

� �

��

.ƒg/.x/

.ƒg/.x/� g.x/

g.x/

2.ƒg/.x/� g.x/

and we conclude that

2k.ƒg/.x/ � g.x/k2 C 2k.ƒg/.x/k2 D k2.ƒg/.x/ � g.x/k2 C kg.x/k2

for any x 2 E1. Since .ƒg/.x/ D .1=2/g.2x/, it follows from the last equality and
.b/ that

2k.ƒg/.x/ � g.x/k2 D kg.2x/ � g.x/k2 C kg.x/k2 � .1=2/kg.2x/k2

� 2
�kxk C ı.x/

�2 � .1=2/kg.2x/k2 .c/

for each x 2 E1.
If kxk < 1, then it follows from .c/ that

2k.ƒg/.x/ � g.x/k2 � 2
�kxk C ı.x/

�2

or equivalently

k.ƒg/.x/ � g.x/k �
p
1C 2L2  .x/ .d/

for all x 2 E1 with kxk < 1. If kxk � 1, then it follows from (13.9), .b/, and .c/
that

2k.ƒg/.x/ � g.x/k2 � 2
�kxk C ı.x/

�2 � .1=2/kg.2x/k2

� 2
�kxk C ı.x/

�2 � .1=2/
�k2xk � ı.2x/�2

� 2
�kxk C ı.x/

�2 � .1=2/
�
2kxk � 2L2ı.x/�2

D 4
�
1C L2

�kxkı.x/C 2
�
1 �L4�ı.x/2
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� 4
�
1C L2

�kxkı.x/C 2
1� L4

L2
kxkı.x/

D 2

	
1C L2

L


2
kxkı.x/:

Hence, it follows that

k.ƒg/.x/ � g.x/k � �
1C L2

�
 .x/ .e/

for all x 2 E1 with kxk � 1. In view of .d/ and .e/, we conclude that

d.ƒg; g/ � 1C L2: .f /

According to Theorem 2.43 .i/, the sequence fƒngg converges to a fixed point
I of ƒ, i.e., if we define a function I W E1 ! E2 by

I.x/ D lim
n!1.ƒ

ng/.x/ D lim
n!1 2�ng.2nx/ .g/

for all x 2 E1, then I belongs to X and I satisfies

I.2x/ D 2I.x/ .h/

for any x 2 E1. Moreover, it follows from Theorem 2.43 .iii/ and .f / that

d.g; I / � 1

1 � L
d.ƒg; g/ � 1C L2

1 �L ;

i.e., inequality (13.12) holds true for every x 2 E1.
If we replace x with 2nx and y with 2ny in .b/, divide by 2n both sides of the

resulting inequality and let n go to infinity, then it follows from (13.10) and .g/ that
I is an isometry.

Finally, it remains to prove the uniqueness of I . Let I 0 be another isometry sat-
isfying (13.12) and .h/ in place of I . If we substitute g, I , and 0 for x, x�, and n0
in Theorem 2.43, respectively, then (13.12) implies that

d
�
ƒn0g; I 0� D d.g; I 0/ � 1C L2

1 � L
< 1:

Hence, I 0 2 X� (see Theorem 2.43 for the definition of X�). By .h/, we further
have I 0.x/ D .1=2/I 0.2x/ D .ƒI 0/.x/ for all x 2 E1, i.e., I 0 is a “fixed point” of
ƒ. Therefore, Theorem 2.43 .ii/ implies that I D I 0. ut
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We notice that the parallelogram law is specifically true for norms derived from
inner products. It is also known that every isometry from a real normed space into
a real Hilbert space is affine (see [15]). Since the isometry I satisfies I.0/ D 0

(see the proof of Theorem 13.15), the following corollary is a consequence of
Theorem 13.15.

Corollary 13.16. Let E1 and E2 be a real normed space and a real Hilbert space,
respectively. Given any 0 � p < 1, choose a constant " with 1 < " � 21�p and
define a function ı W E1 ! Œ0;1/ by

ı.x/ D "kxkp

for all x 2 E1. If a function f W E1 ! E2 satisfies the inequality (13.11) for all
x; y 2 E1, then there exists a unique linear isometry I W E1 ! E2 such that

kf .x/ � f .0/ � I.x/k � 1C "

" � p
"
 .x/

for all x 2 E1, where

 .x/ D
( p

"=."C 2/
�kxk C "kxkp� .for kxk < 1/;

"kxk.1Cp/=2 .for kxk � 1/:

We simply need to put L D "�1=2 in Theorem 13.15 to prove Corollary 13.16.
Similarly, Jung proved the following theorem and corollary.

Theorem 13.17. Let E1 be a normed space over K and let E2 be a Banach space
over K in which the parallelogram law holds true. Assume that ı W E1 ! Œ0;1/ is
an even function such that there exists a constant L, 0 < L < 1, with

8
<̂

:̂

2ı.x/ � L2ı.2x/ .for all x 2 E1/;
kxk � ı.x/ .for all x 2 E1 with kxk < 1/;
kxk � L2ı.x/ .for all x 2 E1 with kxk � 1/;

and
lim
n!1 2nı.2�nx/ D 0

for all x 2 E1. If a function f W E1 ! E2 satisfies the inequality (13.11) for all
x; y 2 E1, then there exists an isometry I W E1 ! E2 such that the inequality
(13.12) holds true for all x 2 E1, where

 .x/ D
(
.1=L/

pkxkı.x/ .for kxk < 1/;
�
1=

p
1C 2L2

��kxk C ı.x/
�

.for kxk � 1/:

The I is the unique isometry satisfying (13.12) and I.2x/ D 2I.x/ for any x 2 E1.
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Corollary 13.18. Let E1 and E2 be a real normed space and a real Hilbert space,
respectively. For a given p > 1, choose constants "1 and "2 with 0 < "1 � 1 <

"2 � 2p�1 and define a function ı W E1 ! Œ0;1/ by

ı.x/ D
(
"1kxkp .for kxk < 1/;
"2kxkp .for kxk � 1/

for all x 2 E1. If a function f W E1 ! E2 satisfies the inequality (13.11) for all
x; y 2 E1, then there exists a unique linear isometry I W E1 ! E2 such that

kf .x/ � f .0/ � I.x/k � 1C "2

"2 � p
"2
 .x/

for all x 2 E1, where

 .x/ D
( p

"1"2 kxk.1Cp/=2 .for kxk < 1/;
p
"2=."2 C 2/

�kxk C "2kxkp� .for kxk � 1/:

13.4 Wigner Equation

Let E1 and E2 be real or complex Hilbert spaces (we denote the scalar field by K)
with the inner products and the associated norms denoted by h�; �i and k � k, respec-
tively.

A function f W E1 ! E2 is called inner product preserving if it is a solution of
the orthogonality equation

hf .x/; f .y/i D hx; yi (13.13)

for all x; y 2 E1. We can present that f satisfies (13.13) if and only if it is a linear
isometry. Similarly, f W E1 ! E2 is a solution of the functional equation

hf .x/; f .y/i D hy; xi; (13.14)

for every x; y 2 E1, if and only if f is a conjugate-linear isometry, i.e., f is an
isometry and f .	x C �y/ D 	f .x/C �f .y/ for any x; y 2 E1 and 	;� 2 K.

Functions f; g W E1 ! E2 are called phase-equivalent if and only if there exists
a function � W E1 ! S such that g.x/ D �.x/f .x/ for each x 2 E1, where we set

S D ˚
z 2 K j jzj D 1

�
:

A functional equation

jhf .x/; f .y/ij D jhx; yij; (13.15)
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for any x; y 2 E1, is called the Wigner equation (or the generalized orthogonality
equation) because it first appeared in the book by E. P. Wigner [358]. The following
theorem plays a crucial role in Wigner’s time reversal operator theory.

Theorem 13.19 (Wigner). If a function f W E1 ! E2 satisfies (13.15), then f is
phase-equivalent to a linear or a conjugate-linear isometry.

The “mathematical” proof of this theorem can be found in [317,329]. The Hyers–
Ulam stability of the Wigner equation has been proved, in a more general setting, in
[65]. For the real case, a more elementary proof was given in [64]:

Let E be a real Hilbert space with dimE � 2. If a function f W E ! E satisfies
the inequality

ˇ̌jhf .x/; f .y/ij � jhx; yijˇ̌ � ı (13.16)

for all x; y 2 E and some ı � 0, then there exists a solution function I W E ! E

of the Wigner equation (13.15) such that

kf .x/ � I.x/k �
p
ı

for any x 2 E .

Let c and d be given constants, where c > 0 .c ¤ 1/ and d � 0. From now on,
we denote byD a subset of E1 defined by

D D
( ˚
x 2 E1 j kxk � d

�
.for 0 < c < 1/;

˚
x 2 E1 j kxk � d

�
.for c > 1/

if there is no specification. We will exclude the trivial case D D f0g. We consider a
function ' W E21 ! Œ0;1/ satisfying the property

lim
mCn!1 cmCn'.c�mx; c�ny/ D 0 (13.17)

for all x; y 2 D.
In order to define a class of approximate solutions of the Wigner equation, we

introduce the functional inequality

ˇ
ˇjhf .x/; f .y/ij � jhx; yijˇˇ � '.x; y/ (13.18)

for all x; y 2 D. Let us define a functional sequence ffng by

fn.x/ D cnf .c�nx/ (13.19)
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for any x 2 E1. Then, it easily follows from (13.18) that

kxk2 � cmCn'.c�mx; c�nx/

� jhfm.x/; fn.x/ij
� kxk2 C cmCn'.c�mx; c�nx/ (13.20)

for any x 2 D and m; n 2 N0. In particular, if we set m D n in (13.20), then we
have

kxk2 � c2n'.c�nx; c�nx/ � kfn.x/k2 � kxk2 C c2n'.c�nx; c�nx/: (13.21)

With these considerations, J. Chmieliński and S.-M. Jung [66] proved the Hyers–
Ulam–Rassias stability of the Wigner equation on a restricted domain.

Theorem 13.20 (Chmieliński and Jung). Let E1 and E2 be real .or complex/
Hilbert spaces. If a function f W E1 ! E2 satisfies (13.18) with the function ' W
E21 ! Œ0;1/ satisfying the property (13.17), then there exists a solution function
I W E1 ! E2 of the Wigner equation (13.15) such that

kf .x/ � I.x/k � p
'.x; x/

for all x 2 D. The function I is unique up to a phase-equivalent function.

Proof. The right-hand-side inequality in (13.21) and property (13.17) imply that
the sequence ffn.x/g is bounded for any x 2 D. Thus, there exists a subsequence
ffln.x/.x/g of ffn.x/g weakly convergent in E2 (cf. [241, Theorem 2]). Next, we
choose �ln.x/ 2 S such that

�ln.x/hfln.x/.x/; f .x/i � 0:

As S is compact in K, we can find a convergent subsequence f�kn.x/g. We will
now write f�n.x/g instead of f�kn.x/g. Then, we have

h�n.x/fkn.x/.x/; f .x/i � 0

which together with (13.20) gives us

h�n.x/fkn.x/.x/; f .x/i
D ˇ
ˇh�n.x/fkn.x/.x/; f .x/i

ˇ
ˇ

D ˇ
ˇhfkn.x/.x/; f .x/i

ˇ
ˇ

� kxk2 � ckn.x/'.c�kn.x/x; x/: (a)



13.4 Wigner Equation 317

Since the sequence f�n.x/fkn.x/.x/g is weakly convergent, we can define

f�.x/ D w-lim
n!1 �n.x/fkn.x/.x/

for each x 2 D. It follows from (13.18) that

ˇ
ˇjh�m.x/fkm.x/.x/; �n.y/fkn.y/.y/ij � jhx; yijˇˇ

� ckm.x/Ckn.y/'
�
c�km.x/x; c�kn.y/y

�
(b)

for any x; y 2 D and m; n 2 N0. For a fixed y 2 D and n 2 N0, we define

˛.z/ D ˝
z; �n.y/fkn.y/.y/

˛

for every z 2 E2. Then, we have ˛ 2 E�
2 and we can write .b/ as

ˇ̌j˛.�m.x/fkm.x/.x//j � jhx; yijˇ̌ � ckm.x/Ckn.y/'
�
c�km.x/x; c�kn.y/y

�
:

Letting m ! 1, we get

ˇ
ˇj˛.f�.x//j � jhx; yijˇˇ � 0

and then ˇ
ˇh�n.y/fkn.y/.y/; f�.x/i

ˇ
ˇ D jhx; yij .c/

for all x 2 D.
For a fixed x 2 D, we define a functional ˇ from the dual space E�

2 by

ˇ.z/ D hz; f�.x/i

for any z 2 E2, and then .c/ can be expressed as

ˇ
ˇˇ
�
�n.y/fkn.y/.y/

�ˇˇ D jhx; yij:

Letting n ! 1, we get from the definition of f� that

ˇ
ˇˇ
�
f�.y/

�ˇˇ D jhx; yij;

i.e.,
ˇ
ˇhf�.x/; f�.y/i

ˇ
ˇ D jhx; yij .d/

for every x; y 2 D.
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From (13.21) and .a/, we obtain

k�n.x/fkn.x/.x/ � f .x/k2
D k�n.x/fkn.x/.x/k2 C kf .x/k2 � 2<�h�n.x/fkn.x/.x/; f .x/i

�

� kxk2 C c2kn.x/'
�
c�kn.x/x; c�kn.x/x

�

C kxk2 C '.x; x/ � 2kxk2 C 2ckn.x/'
�
c�kn.x/x; x

�

for all x 2 D. Let us fix x 2 D. If f�.x/ ¤ f .x/, then we define

�.z/ D
�
z;

f�.x/ � f .x/

kf�.x/ � f .x/k
�

for all z 2 E2. Obviously, � 2 E�
2 and k�k D 1. Thus,

ˇ
ˇ�
�
�n.x/fkn.x/.x/ � f .x/�ˇˇ

� k�n.x/fkn.x/.x/ � f .x/k

�
q
c2kn.x/'

�
c�kn.x/x; c�kn.x/x

�C '.x; x/C 2ckn.x/'
�
c�kn.x/x; x

�
:

Letting n ! 1 and using property (13.17) yield j�.f�.x/ � f .x//j � p
'.x; x/.

Hence,

kf�.x/ � f .x/k � p
'.x; x/ .e/

for any x 2 D. .Obviously, the last inequality also holds true if f�.x/ D f .x/:/

Now, we have to extend f� from D to the whole E1. Putting

n.x/ D min
˚
n 2 N0 j c�nx 2 D�

for each x 2 E1nf0g, we define

I.x/ D
(
cn.x/f�.c�n.x/x/ .for x 2 E1nf0g/;
0 .for x D 0/:

.f /

If x D 0 or y D 0, then hI.x/; I.y/i D hx; yi D 0. For x; y 2 E1nf0g, we have

jhI.x/; I.y/ij D ˇ
ˇ˝cn.x/f�.c�n.x/x/; cn.y/f�.c�n.y/y/

˛ˇˇ

D cn.x/Cn.y/
ˇ
ˇ˝f�.c�n.x/x/; f�.c�n.y/y/

˛ˇˇ

D cn.x/Cn.y/
ˇ
ˇ˝c�n.x/x; c�n.y/y

˛ˇˇ

D jhx; yij;
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i.e., I satisfies the Wigner equation (13.15). Moreover, if x 2 D, then n.x/ D 0

and hence I.x/ D f�.x/. It then follows from .e/ that

kI.x/ � f .x/k � p
'.x; x/

for each x 2 D.
It now suffices to prove the uniqueness of I . Suppose that I1; I2 W E1 ! E2

satisfy the assertion of the theorem, i.e., that both are solutions of (13.15) such that
kIi .x/ � f .x/k � p

'.x; x/ for all x 2 D and i 2 f1; 2g. Then

kI1.x/ � I2.x/k � 2
p
'.x; x/

for every x 2 D. In view of Theorem 13.19, there exist two linear or conjugate-linear
isometries T1; T2 W E1 ! E2 and functions �1; �2 W E1 ! S such that

I1.x/ D �1.x/T1.x/ and I2.x/ D �2.x/T2.x/

for any x 2 E1. Let us fix x 2 E1. As before, let n.x/ be the smallest nonnegative
integer such that c�n.x/x 2 D. For n � n.x/, we have c�nx 2 D and hence

4'.c�nx; c�nx/ � kI1.c�nx/ � I2.c�nx/k2

D k�1.c�nx/T1.c�nx/ � �2.c
�nx/T2.c�nx/k2

D kT1.c�nx/k2 C kT2.c�nx/k2
� 2<�˝�1.c�nx/T1.c�nx/; �2.c�nx/T2.c�nx/

˛�

� 2kc�nxk2 � 2ˇˇ˝T1.c�nx/; T2.c�nx/
˛ˇˇ

D 2c�2nkxk2 � 2c�2njhT1.x/; T2.x/ij:

Therefore, we have

kxk2 � 2c2n'.c�nx; c�nx/ � jhT1.x/; T2.x/ij .g/

for all x 2 E1 and n � n.x/.
Assume that T1.x/ and T2.x/ were linearly independent for some x 2 E1nf0g.

Then, we would have

jhT1.x/; T2.x/ij < kT1.x/k�kT2.x/k D kxk2;

i.e., there would exist  2 Œ0; 1/ such that jhT1.x/; T2.x/ij D kxk2. This together
with .g/ would give

kxk2 � 2c2n'.c�nx; c�nx/ � kxk2
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and consequently

.1 � /kxk2 � 2c2n'.c�nx; c�nx/

for any n � n.x/. Due to (13.17), the right-hand side of the above inequality tends
to zero as n ! 1, a contradiction. Thus, the vectors T1.x/ and T2.x/ are linearly
dependent for any x 2 E1.

Assume now that T1.x/ D �T2.x/ and j� j ¤ 1 for some x 2 E1nf0g. Without
loss of generality, we can assume that j� j < 1. Once again, it would follow from
.g/ that

kxk2 � 2c2n'.c�nx; c�nx/ � jhT1.x/; T2.x/ij
D jh�T2.x/; T2.x/ij
D j� j�jhT2.x/; T2.x/ij
D j� j�kxk2

for all n � n.x/. Therefore,

�
1 � j� j�kxk2 � 2c2n'.c�nx; c�nx/

for any n � n.x/. Letting n ! 1, we obtain

�
1� j� j�kxk2 � 0;

a contradiction. Thus (defining �.0/ D 1) we have proved that for any x 2 E1 there
exists �.x/ 2 K such that j�.x/j D 1 and T1.x/ D �.x/T2.x/. This implies

I1.x/ D �1.x/T1.x/ D �1.x/�.x/T2.x/ D �1.x/�.x/

�2.x/
I2.x/

for any x 2 E1, which means that I1 and I2 are phase-equivalent and ends the
proof. ut

Let '.x; y/ D "kxkpkykp with " � 0. Then

cmCn'.c�mx; c�ny/ D "c.mCn/.1�p/kxkpkykp

for each m; n 2 N . For either 0 < c < 1 and p < 1 or c > 1 and p > 1, the right-
hand side of the above equality tends to zero asmCn ! 1; i.e., ' satisfies (13.17).
Thus, by applying Theorem 13.20, we can easily prove the following corollary.

Corollary 13.21. Assume either that p < 1 and D D ˚
x 2 E1 j kxk � d

�

.d � 0/ or that p > 1 and D D ˚
x 2 E1 j kxk � d

�
.d > 0/. If a function

f W E1 ! E2 satisfies the inequality

ˇ̌jhf .x/; f .y/ij � jhx; yijˇ̌ � "kxkpkykp
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for all x; y 2 D, then there exists a solution function I W E1 ! E2 of the Wigner
equation (13.15) such that

kf .x/ � I.x/k � p
" kxkp

for each x 2 D. The function I is unique up to a phase-equivalent function.

If we put p D 0 in Corollary 13.21, then we obtain the Hyers–Ulam stability of
the Wigner equation.

Corollary 13.22. If a function f W E1 ! E2 satisfies the inequality (13.16) for all
x; y 2 D D ˚

x 2 E1 j kxk � d
�
.d � 0/, then there exists a solution function

I W E1 ! E2 of the Wigner equation (13.15) such that

kf .x/ � I.x/k �
p
ı

for any x 2 D. The function I is unique up to a phase-equivalent function.

In the following theorem, we prove the Hyers–Ulam–Rassias stability of the or-
thogonality equation.

Theorem 13.23. Let E1 and E2 be real .or complex/ Hilbert spaces. If a function
f W E1 ! E2 satisfies the inequality

jhf .x/; f .y/i � hx; yij � '.x; y/ (13.22)

for any x; y 2 D and ' W E21 ! Œ0;1/ satisfies (13.17), then there exists a unique
linear isometry I W E1 ! E2 such that

kf .x/ � I.x/k � p
'.x; x/ (13.23)

for all x 2 D.

Proof. We define fn.x/ D cnf .c�nx/ and observe that

kxk2 � cmCn'.c�mx; c�nx/ � <�hfm.x/; fn.x/i
�

� kxk2 C cmCn'.c�mx; c�nx/

for all x 2 D. Using these inequalities, we present that

kfm.x/ � fn.x/k
�
p
c2m'.c�mx; c�mx/C c2n'.c�nx; c�nx/C 2cmCn'.c�mx; c�nx/
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for all x 2 D. The right-hand side tends to zero asm; n ! 1. SinceE2 is complete,
we may define

f�.x/ D lim
n!1fn.x/

for any x 2 D. Now, using .f / in the proof of Theorem 13.20, we extend f� to I
defined on E1 and prove that I satisfies (13.13) and (13.23).

If I 0 also satisfies the assertion of the theorem, then (due to linearity of I 0 and
(13.23))

kI 0.x/ � fn.x/k � cn
p
'.c�nx; c�nx/ ! 0 as n ! 1

for all x 2 D. Therefore,

I 0.x/ D lim
n!1fn.x/ D f�.x/

for each x 2 D, which implies that I D I 0 on E1. ut
On the other hand, S.-M. Jung and P. K. Sahoo [207] proved the superstability of

the Wigner equation on restricted domains under some strong conditions imposed
on the control function:

Given an integer n � 2 and positive real numbers c ¤ 1 and d , we define

Dn D
( ˚
x 2 Rn j kxk � d

�
.for 0 < c < 1/;

˚
x 2 Rn j kxk < d� .for c > 1/;

where k � k denotes the usual norm on Rn defined by

kxk D
p

hx; xi

with the usual inner product h�; �i defined by

hx; yi D x1y1 C x2y2 C � � � C xnyn

for all points x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ of Rn.
Suppose ' W Rn � Rn ! Œ0;1/ is a symmetric function which satisfies the

following conditions:

(i) There exists a function� W Œ0;1/2 ! Œ0;1/ such that '.x; y/ D �
�kxk; kyk�

for all x; y 2 Rn;
(ii) For all x; y 2 Rn

�
1=j	j�'.	x; y/ D O

	
� ln c

ln j	j



either as j	j ! 1 (for 0 < c < 1) or as j	j ! 0 (for c > 1);
(iii) If both j	j and j�j are different from 1, then for all x; y 2 Rn,
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�
1=j	�j�'.	x; �y/ D O

	ˇ̌
ˇ
ˇ

ln c

ln j	j
ln c

ln j�j
ˇ̌
ˇ
ˇ




either as j	�j ! 1 (for 0 < c < 1) or as j	�j ! 0 (for c > 1).

Under these notations and conditions, Jung and Sahoo [207] proved the supersta-
bility of the Wigner equation on restricted domains.

Theorem 13.24. If a function f W Dn ! Rn satisfies the inequality (13.18) for all
x; y 2 Dn, then f satisfies the Wigner equation (13.15) for all x; y 2 Dn.

They also proved the superstability of the orthogonality equation on restricted
domains.

Theorem 13.25. If a function f W Dn ! Rn satisfies the inequality (13.22) for all
x; y 2 Dn, then f satisfies the orthogonality equation (13.13) for all x; y 2 Dn.

Moreover, S.-M. Jung [177, 183] and Th. M. Rassias investigated the Hyers–
Ulam stability of the orthogonality equation (13.13) on a closed ball in R3. Here,
we introduce a result of Rassias:

If a function f W D ! D, defined on a closed ballD � R3 of radius d > 0 and
with center at the origin, satisfies f .0/ D 0 and

jhf .x/; f .y/i � hx; yij � ı

for some 0 � ı < min
˚
1=4; d 2=17

�
and for all x; y 2 D, then there exists an

isometry I W D ! D such that

jf .x/ � I.x/j <
(
14

p
ı

�
for d <

p
17 =2

�
;

.5d C 3/
p
ı

�
for d � p

17 =2
�

for any x 2 D.



Chapter 14
Miscellaneous

One of the simplest functional equations is the associativity equation. This functional
equation represents the famous associativity axiom x � .y � z/ D .x � y/ � z. Sec-
tion 14.1 deals with the superstability of the associativity equation. In Section 14.2,
an important functional equation defining multiplicative derivations in algebras will
be introduced, and the Hyers–Ulam stability of the equation for functions on .0; 1�
will be proved. The gamma function � is very useful to develop other functions
which have physical applications. In Section 14.3, the Hyers–Ulam–Rassias stabil-
ity of the gamma functional equation and a generalized beta functional equation will
be proved. The Hyers–Ulam stability of the Fibonacci functional equation will be
proved in the last section.

14.1 Associativity Equation

The associativity axiom x � .y � z/ D .x � y/ � z plays an important role in definitions
of algebraic structures. The functional equation

F
�
x; F.y; z/

� D F
�
F.x; y/; z

�

is called the associativity equation.
The aim of this section is to solve the functional inequality

ˇ̌
F
�
kx; kF.y; z/

� � F
�
kF.x; y/; kz

�ˇ̌ � ı; (14.1)

where ı is a given positive constant and the variables x; y; z; and k run over Œ0;1/.
C. Alsina [4] presented that the functional inequality (14.1) is superstable.

Theorem 14.1 (Alsina). Let a function F W Œ0;1/2 ! Œ0;1/ be given with
F.0; x/ D x for all x � 0. If F satisfies the inequality (14.1) for all x; y; z; k � 0,
then F satisfies the equation

F
�
kx; kF.y; z/

� D F
�
kF.x; y/; kz

�
(14.2)

for all x; y; z; k � 0.

S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear
Analysis, Springer Optimization and Its Applications 48,
DOI 10.1007/978-1-4419-9637-4 14, c� Springer Science+Business Media, LLC 2011
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Proof. Let u > 1 be fixed. Putting k D un .n 2 N/, x D 0 in (14.1), and dividing
the resulting inequality by un yield

jF.y; z/ � u�nF.uny; unz/j � u�nı:

Hence, we get

F.y; z/ D lim
n!1 u�nF.uny; unz/ .a/

for any y; z � 0 and any u > 1. It follows from .a/ that

F.y; z/ D lim
n!1 unF.u�ny; u�nz/ .b/

for y; z � 0 and u < 1.
Using (14.1) and .a/ yields

ˇ̌
F
�
x; F.y; z/

� � F
�
F.x; y/; z

�ˇ̌

D lim
n!1 2�nˇˇF

�
2nx; 2nF.y; z/

� � F
�
2nF.x; y/; 2nz

�ˇˇ

� lim
n!1 2�nı

D 0

for all x; y; z � 0, where the associativity of F follows.
Using this and .a/ yields

ˇ
ˇF
�
kx; kF.y; z/

� � F �kF.x; y/; kz
�ˇˇ

D lim
n!1

ˇ
ˇk�nF

�
knC1x; knC1F.y; z/

� � k�nF
�
knC1F.x; y/; knC1z

�ˇˇ

D k �
ˇ
ˇ̌ lim
n!1k�.nC1/F

�
knC1x; knC1F.y; z/

�

� lim
n!1k�.nC1/F

�
knC1F.x; y/; knC1z

�ˇ̌
ˇ

D k � ˇˇF �x; F.y; z/� � F
�
F.x; y/; z

�ˇˇ

D 0

for every x; y; z � 0 and k > 1. Hence, (14.2) holds true whenever k > 1.
Similarly, using .b/ and the associativity of F we show that (14.2) holds true for

0 � k < 1. ut
Moreover, Alsina [4] showed that if we fix k D 1, the superstability fails to hold

true for the associativity equation. It still remains open whether the associativity
equation is stable.
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14.2 Equation of Multiplicative Derivation

Let X be an infinite-dimensional real (or complex) Banach space. By B.X/ we
mean the algebra of all bounded linear operators on X . We denote by F.X/ the
subalgebra of all bounded finite rank operators. A subalgebra A of B.X/ is said
to be standard if A contains F.X/. Let A be a standard operator algebra on X . A
function f W A ! B.X/ is called a multiplicative derivation if f .AB/ D Af .B/C
f .A/B for all A;B 2 A.

We introduce an important functional equation which defines multiplicative
derivations in algebras:

f .xy/ D xf .y/C f .x/y: (14.3)

P. Šemrl [327] obtained the first result concerning the superstability of this equa-
tion for functions between operator algebras. Here, we introduce a Hyers–Ulam
stability result presented by J. Tabor [349] as an answer to a question by G. Maksa
[239].

Theorem 14.2 (Tabor). Let E be a Banach space, and let a function f W .0; 1� !
E satisfy the inequality

kf .xy/ � xf .y/ � f .x/yk � ı (14.4)

for some ı > 0 and for all x; y 2 .0; 1�. Then there exists a solutionD W .0; 1� ! E

of the equation (14.3) such that

kf .x/ �D.x/k � .4e/ı

for every x 2 .0; 1�.
Proof. Let us define a function g W .0; 1� ! E by

g.x/ D f .x/=x

for each x 2 .0; 1�. Then g satisfies the inequality

kg.xy/ � g.x/ � g.y/k � ı=.xy/

for any x; y 2 .0; 1�. Define a functionG W Œ0;1/ ! E by G.v/ D g.e�v/. Then

kG.u C v/�G.u/�G.v/k � ıeuCv .a/

for every u; v � 0, which implies that

kG.u C v/�G.u/�G.v/k � ıec
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for all u; v 2 Œ0; c/ with u C v < c, where c > 1 is an arbitrarily given constant.
According to Lemma 2.28, there exists an additive function A W R ! E such

that
kG.u/�A.u/k � 3ecı

for every u 2 Œ0; c/. If we let c ! 1 in the last inequality, we then get

kG.u/� A.u/k � 3eı .b/

for every u 2 Œ0; 1�. Moreover, it follows from .a/ that

kG.u C 1/�G.u/�G.1/k � ıeuC1;
kG.u C 2/�G.u C 1/�G.1/k � ıeuC2;

:::

kG.u C k/ �G.u C k � 1/�G.1/k � ıeuCk

for each u 2 Œ0; 1� and k 2 N . Summing up these inequalities, we obtain

kG.u C k/ �G.u/� kG.1/k � ıe � euCk .c/

for u 2 Œ0; 1� and k 2 N .
Let v � 0 and let k 2 N0 be given with v � k 2 Œ0; 1�. Then, by .b/ and .c/,

we have

kG.v/ �A.v/k � kG.v/�G.v � k/ � kG.1/k
C kG.v � k/ � A.v � k/k C k �A.k/C kG.1/k

� ıe � ev C 3ıe C kkA.1/ �G.1/k
� ıe � ev C 3ıe C 3ıev

� ıe.ev C 3.1C v//

� 4ıe � ev:

This and the definition of G imply that

kg.x/ � A.� lnx/k � 4ıe � e� lnx D 4ıe=x

for x 2 .0; 1�, i.e.,

kf .x/=x �A.� lnx/k � 4ıe=x .d/

for all x 2 .0; 1�. If we put D.x/ D xA.� ln x/ for x 2 .0; 1�, we can easily check
that D is a solution of (14.3). This and .d/ yield that

kf .x/ �D.x/k D kf .x/ � xA.� ln x/k � .4e/ı

for each x 2 .0; 1�. ut
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Similarly, Z. Páles [260] proved that the functional equation (14.3) for real-valued
functions on Œ1;1/ is stable in the sense of Hyers and Ulam. Moreover, he remarked
that the equation (14.3) has a stronger property, i.e., a superstability on Œ1;1/.

14.3 Gamma Functional Equation

The gamma function

�.x/ D
Z 1

0

e�t tx�1dt;

for x > 0, appears occasionally in the physical applications. The gamma function is
especially very useful to develop other functions which have physical applications.
It is well-known that the gamma function satisfies the functional equations

f .x C 1/ D xf .x/ (14.5)

for all x > 0,

p�1Y

kD0
f
�
.x C k/=p

� D .2�/.1=2/.p�1/p1=2�xf .x/

for any x > 0 and p 2 N , and

f .x/f .1 � x/ D �.sin�x/�1

for each x 2 .0; 1/.
The functional equation (14.5), however, is the most well-known among them

because it is the simplest and the most remarkable. For convenience, we call the
equation (14.5) the gamma functional equation.

Let Rı D Rnf0;�1;�2; : : :g and let a function ' W Rı ! Œ0;1/ satisfy

ˆ.x/ D
1X

jD0
'.x C j /

jY

iD0
jx C i j�1 < 1 (14.6)

for all x 2 Rı.
S.-M. Jung [160] proved the Hyers–Ulam–Rassias stability of the gamma func-

tional equation (14.5) (cf. [5, 168]).

Theorem 14.3 (Jung). Assume the function f W Rı ! R satisfies the functional
inequality

jf .x C 1/� xf .x/j � '.x/ (14.7)
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for all x 2 Rı. Then there exists a unique function G W Rı ! R which satisfies the
gamma functional equation (14.5) for all x 2 Rı and the inequality

jf .x/ �G.x/j � ˆ.x/ (14.8)

for every x 2 Rı.

Proof. Let x be an arbitrary element of Rı. First, we use induction on n to prove
that

ˇ
ˇ
ˇ̌
ˇ
f .x C n/ � f .x/

n�1Y

iD0
.x C i/

ˇ
ˇ
ˇ̌
ˇ

�
n�1X

jD0
'.x C j /

n�1�jY

iD1
jx C i C j j; .a/

for any n 2 N , where we define
0Y

iD1
jx C i j D 1 conventionally. The inequality .a/

immediately follows from (14.7) for the case of n D 1. Assume that .a/ holds true
for some integer n > 0. Using (14.7) and .a/, we obtain for nC 1

ˇ
ˇ
ˇ̌
ˇ
f .x C nC 1/� f .x/

nY

iD0
.x C i/

ˇ
ˇ
ˇ̌
ˇ

� jf .x C nC 1/� .x C n/f .x C n/j

C jx C nj
ˇ
ˇ̌
ˇ
ˇ
f .x C n/ � f .x/

n�1Y

iD0
.x C i/

ˇ
ˇ̌
ˇ
ˇ

� '.x C n/C jx C nj
n�1X

jD0
'.x C j /

n�1�jY

iD1
jx C i C j j

D '.x C n/C
n�1X

jD0
'.x C j /

n�jY

iD1
jx C i C j j

D
nX

jD0
'.x C j /

n�jY

iD1
jx C i C j j;

which ends the proof of .a/.
If we divide both sides in .a/ by jx.x C 1/ � � � .x C n� 1/j, we get

ˇ
ˇ
ˇ
ˇ̌f .x C n/

n�1Y

iD0
.x C i/�1 � f .x/

ˇ
ˇ
ˇ
ˇ̌ �

n�1X

jD0
'.x C j /

jY

iD0
jx C i j�1 .b/

for every n 2 N . By using (14.7) and (14.6), we have for n > m > 0

ˇ
ˇ
ˇ̌
ˇ
f .x Cm/

m�1Y

iD0
.x C i/�1 � f .x C n/

n�1Y

iD0
.x C i/�1

ˇ
ˇ
ˇ̌
ˇ
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D
ˇ
ˇ
ˇ
ˇ
ˇ
f .x Cm/

m�1Y

iD0
.x C i/�1 � f .x CmC 1/

mY

iD0
.x C i/�1

C f .x CmC 1/

mY

iD0
.x C i/�1 � f .x CmC 2/

mC1Y

iD0
.x C i/�1

C � � � �

C f .x C n � 1/

n�2Y

iD0
.x C i/�1 � f .x C n/

n�1Y

iD0
.x C i/�1

ˇ
ˇ̌
ˇ
ˇ

�
n�1X

jDm

ˇ
ˇ.x C j /f .x C j / � f .x C j C 1/

ˇ
ˇ
jY

iD0
jx C i j�1

�
n�1X

jDm
'.x C j /

jY

iD0
jx C i j�1

! 0 as m ! 1:

Therefore, the sequence

(

f .x C n/

n�1Y

iD0
.x C i/�1

)

is a Cauchy sequence, and we can define a functionG W Rı ! R by

G.x/ D lim
n!1f .x C n/

n�1Y

iD0
.x C i/�1:

In view of .b/ and (14.6), the inequality (14.8) is true. By the definition ofG we can
easily verify that G satisfies (14.5) for its domain of definition:

G.x C 1/ D lim
n!1f .x C nC 1/

n�1Y

iD0
.x C i C 1/�1

D x lim
n!1f .x C nC 1/

nY

iD0
.x C i/�1

D xG.x/:

Assume now that G0 W Rı ! R is another function which satisfies (14.5) and
(14.8). It follows from (14.5) that

G.x/ D G.x C n/

n�1Y

iD0
.x C i/�1 and G0.x/ D G0.x C n/

n�1Y

iD0
.x C i/�1 .c/
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for each n 2 N . By .c/, (14.8), and (14.6), we obtain

ˇ
ˇG.x/ �G0.x/

ˇ
ˇ D ˇ

ˇG.x C n/ �G0.x C n/
ˇ
ˇ
n�1Y

iD0
jx C i j�1

� 2ˆ.x C n/

n�1Y

iD0
jx C i j�1

D 2

1X

jD0
'.x C nC j /

nCjY

iD0
jx C i j�1

D 2

1X

jDn
'.x C j /

jY

iD0
jx C i j�1

! 0 as n ! 1;

which implies the uniqueness of G. ut
The condition in (14.6) for ' is not very strong. By the ratio test for convergence

of infinite series, we can easily demonstrate that almost all functions ' W Rı !
Œ0;1/ which are familiar to us, for example, '.x/ D ı, cjxjp , c ln jxj, c exp

�jxj�,
etc., satisfy the condition (14.6).

Even though a function G W Rı ! R satisfies the gamma functional equation
(14.5), G is not necessarily equal to the gamma function � on .0;1/. If G is loga-
rithmically convex on .0;1/ and satisfies the gamma functional equation (14.5) for
x > 0 and G.1/ D 1, then G necessarily equals the gamma function � on .0;1/

(see [208]).
We will now introduce a new functional equation

f .x C p; y C q/ D  .x; y/f .x; y/: (14.9)

The gamma functional equation and the beta functional equation are special cases
of this functional equation (14.9).

In the rest of this section, we investigate the Hyers–Ulam stability of the func-
tional equation (14.9). Indeed, K.-W. Jun, G.-H. Kim, and Y.-W. Lee [148] proved
the following theorem.

Theorem 14.4 (Jun, Kim, and Lee). Let ı, p, and q be positive real numbers
and let n0 be a nonnegative integer. If a function f W .0;1/2 ! R satisfies the
inequality

jf .x C p; y C q/�  .x; y/f .x; y/j � ı (14.10)

for all x; y > n0 and if the function  W .0;1/2 ! .0;1/ satisfies

‰.x; y/ D
1X

iD0

iY

jD0

1

 .x C jp; y C jq/
< 1 (14.11)
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for all x; y > n0, then there exists a unique solution G W .0;1/2 ! R of the
functional equation (14.9) with

jf .x; y/ �G.x; y/j � ‰.x; y/ı (14.12)

for any x; y > n0.

Proof. For any x; y > 0 and n 2 N , we define

Pn.x; y/ D f .x C np; y C nq/

n�1Y

jD0

1

 .x C jp; y C jq/
:

By (14.10), we have

jPnC1.x; y/ � Pn.x; y/j
D ˇ
ˇf .x C np C p; y C nq C q/

�  .x C np; y C nq/f .x C np; y C nq/
ˇ
ˇ
nY

jD0

1

 .x C jp; y C jq/

� ı

nY

jD0

1

 .x C jp; y C jq/
(a)

for all x; y > n0 and n 2 N .
We now use induction on n to prove

jPn.x; y/ � f .x; y/j � ı

n�1X

iD0

iY

jD0

1

 .x C jp; y C jq/
.b/

for all x; y > n0 and n 2 N . In view of (14.10), the inequality .b/ is true for n D 1.
Assume that the inequality .b/ is true for some integer n > 0. Then, it follows from
.a/ and .b/ that

jPnC1.x; y/ � f .x; y/j � jPnC1.x; y/ � Pn.x; y/j C jPn.x; y/ � f .x; y/j

� ı

nX

iD0

iY

jD0

1

 .x C jp; y C jq/
;

which ends the proof of .b/.
We claim that fPn.x; y/g is a Cauchy sequence. Indeed, for any m; n 2 N with

n > m and x; y > n0, it follows from (14.11) and .a/ that

jPn.x; y/ � Pm.x; y/j �
n�1X

iDm
jPiC1.x; y/ � Pi .x; y/j
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� ı

n�1X

iDm

iY

jD0

1

 .x C jp; y C jq/

! 0 as m ! 1:

Hence, we can define a function G0 W .n0;1/2 ! R by

G0.x; y/ D lim
n!1Pn.x; y/:

Since Pn.x C p; y C q/ D  .x; y/PnC1.x; y/, we have

G0.x C p; y C q/ D  .x; y/G0.x; y/ .c/

for all x; y > n0. In view of (14.11) and .b/, we get

jG0.x; y/ � f .x; y/j D lim
n!1 jPn.x; y/ � f .x; y/j

� ı

1X

iD0

iY

jD0

1

 .x C jp; y C jq/

D ‰.x; y/ı

for any x; y > n0. If G1 W .n0;1/2 ! R is another function which satisfies

G1.xCp; yCq/ D  .x; y/G1.x; y/ and jG1.x; y/�f .x; y/j � ‰.x; y/ı .d/

for any x; y > n0, then it follows from (14.12), .c/, and .d/ that

jG0.x; y/ �G1.x; y/j

D jG0.x C np; y C nq/�G1.x C np; y C nq/j
n�1Y

jD0

1

 .x C jp; y C jq/

� 2ı‰.x C np; y C nq/

n�1Y

jD0

1

 .x C jp; y C jq/

D 2ı

1X

iDn

iY

jD0

1

 .x C jp; y C jq/

! 0 as n ! 1

for any x; y > n0, which implies the uniqueness of G0.
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Finally, we extend the domain of G0 to .0;1/2. For 0 < x; y � n0, we define

G.x; y/ D G0.x C kp; y C kq/

k�1Y

nD0

1

 .x C np; y C nq/
;

where k is the smallest natural number satisfying both the inequalities xCkp > n0
and yC kq > n0. It then holds true thatG.xCp; yC q/ D  .x; y/G.x; y/ for all
x; y > 0 and G.x; y/ D G0.x; y/ for any x; y > n0. Thus, the inequality (14.12)
holds true for all x; y > n0. ut

In the following corollary, we prove the Hyers–Ulam stability of the gamma func-
tional equation (14.5). We can compare this corollary with Theorem 14.3 or [5].

Corollary 14.5. Let ı be a positive constant and let n0 be a nonnegative integer. If
a function f W .0;1/ ! R satisfies the inequality

jf .x C 1/� xf .x/j � ı

for all x > n0, then there exists a unique solution G W .0;1/ ! R of the gamma
functional equation (14.5) such that

jf .x/ �G.x/j � eı=x

for all x > n0.

Proof. We apply Theorem 14.4 (for a single-variable case) with p D 1 and  .x/ D
x. For any x > 0, we have

1X

iD0

iY

jD0

1

x C j
D .1=x/

	
1C 1

x C 1
C 1

.x C 1/.x C 2/
C � � �




� .1=x/

	
1C 1C 1

2Š
C 1

3Š
C � � �




D e=x:

Then, the sequence 8
<

:

1X

iD0

iY

jD0

1

x C j

9
=

;

converges to ‰.x/ and ‰.x/ � e=x for any x > 0. Hence, we complete the proof
by using Theorem 14.4. ut

Jun, Kim, and Lee have also proved the stability of the functional equation (14.9)
in the sense of Ger (see [148]).
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Theorem 14.6. Let p and q be positive real numbers and let n0 be a nonnegative
integer. Let f W .0;1/2 ! .0;1/ be a function that satisfies the inequality

ˇ
ˇ̌
ˇ
f .x C p; y C q/

 .x; y/f .x; y/
� 1

ˇ
ˇ̌
ˇ � '.x; y/

for all x; y > n0, where  W .0;1/2 ! .0;1/ is a function such that

‰.x; y/ D
1X

iD0

iY

jD0

1

 .x C jp; y C jq/
< 1

for all x; y > n0 and ' W .0;1/2 ! .0; 1/ is a function such that

˛.x; y/ D
1X

iD0
ln
�
1 � '.x C ip; y C iq/

�
< 1;

ˇ.x; y/ D
1X

iD0
ln
�
1C '.x C ip; y C iq/

�
< 1

for all x; y > n0. Then there exists a unique solution G W .0;1/2 ! .0;1/ of the
functional equation (14.9) with

e˛.x;y/ � G.x; y/=f .x; y/ � eˇ.x;y/

for any x; y > n0.

For more detailed information on the stability results of the functional equation
(14.9), we refer the reader to [217, 219, 234–236].

14.4 Fibonacci Functional Equation

The Fibonacci sequence is one of the most well-known number sequences. Let us
denote by Fn the nth Fibonacci number for any n 2 N . In particular, we will define
F0 WD 0. It is well-known that the Fibonacci numbers satisfy the equation

Fn D Fn�1 C Fn�2

for all integers n � 2 (ref. [225]). From this famous formula, we may derive a
functional equation

f .x/ D f .x � 1/C f .x � 2/; (14.13)

which may be called the Fibonacci functional equation. A function f W R ! R will
be called a Fibonacci function if it is a solution of the Fibonacci equation (14.13).
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The reader is referred to the recent book by M. Th. Rassias [284] providing a
self-contained and rigorous presentation of some of the most important theorems
and results from Number Theory with a wide selection of solved Olympiad-caliber
problems.

In this section, for fixed real numbers p and q with q ¤ 0 and p2 � 4q ¤ 0, we
generalize the Fibonacci functional equation (14.13) into

f .x/ D pf .x � 1/� qf .x � 2/ (14.14)

and prove its Hyers–Ulam stability in the class of functions f W R ! E , where E
is a real (or complex) Banach space.

By a and b we denote the distinct roots of the equation x2 � px C q D 0. More
precisely, we set

a D .1=2/
�
p C

p
p2 � 4q � and b D .1=2/

�
p �

p
p2 � 4q

�
:

Moreover, for any n 2 Z, we define

Un D Un.p; q/ D an � bn

a � b
:

If p and q are integers, then fUn.p; q/g is called the Lucas sequence of the first kind.
It is not difficult to see that

UnC2 D pUnC1 � qUn (14.15)

for all integer n. For any x 2 R, Œx� stands for the largest integer that does not
exceed x.

S.-M. Jung [185] investigated the general solution of the generalized Fibonacci
functional equation (14.14).

Theorem 14.7. Let E be either a real vector space if p2 � 4q > 0 or a complex
vector space if p2 � 4q < 0. A function f W R ! E is a solution of the functional
equation (14.14) if and only if there exists a function h W Œ�1; 1/ ! E such that

f .x/ D UŒx�C1h
�
x � Œx�� � qUŒx�h

�
x � Œx� � 1

�
: (14.16)

Proof. Since aC b D p and ab D q, it follows from (14.14) that

f .x/ � af .x � 1/ D b
�
f .x � 1/� af .x � 2/�;

f .x/ � bf .x � 1/ D a
�
f .x � 1/� bf .x � 2/�:

(a)

By mathematical induction, we can easily verify that

f .x/ � af .x � 1/ D bn
�
f .x � n/ � af .x � n � 1/

�
;

f .x/ � bf .x � 1/ D an
�
f .x � n/ � bf .x � n � 1/�

(b)



338 14 Miscellaneous

for all x 2 R and n 2 N0. If we substitute x C n .n � 0/ for x in .b/ and
divide the resulting equations by bn resp. an, and if we substitute �m for n in the
resulting equations, then we obtain the equations in .b/ with m in place of n, where
m 2 f0;�1;�2; : : :g. Therefore, the equations in .b/ are true for all x 2 R and
n 2 Z.

We multiply the first and the second equation of .b/ by b and a, respectively. If
we subtract the first resulting equation from the second one, then we obtain

f .x/ D UnC1f .x � n/ � qUnf .x � n � 1/ .c/

for any x 2 R and n 2 Z.
If we put n D Œx� in .c/, then

f .x/ D UŒx�C1f
�
x � Œx�

� � qUŒx�f
�
x � Œx� � 1

�

for all x 2 R.
We know that 0 � x� Œx� < 1 and �1 � x� Œx��1 < 0. If we define a function

h W Œ�1; 1/ ! E by h WD f jŒ�1;1/, then we see that f is a function of the form
(14.16).

Assume now that f is a function of the form (14.16), where h W Œ�1; 1/ ! E is
an arbitrary function. Then, it follows from (14.16) that

f .x/ D UŒx�C1h
�
x � Œx�

� � qUŒx�h
�
x � Œx� � 1

�
;

f .x � 1/ D UŒx�h
�
x � Œx�� � qUŒx��1h

�
x � Œx� � 1

�
;

f .x � 2/ D UŒx��1h
�
x � Œx�� � qUŒx��2h

�
x � Œx� � 1

�

for any x 2 R. Thus, by (14.15), we obtain

f .x/ � pf .x � 1/C qf .x � 2/

D �
UŒx�C1 � pUŒx� C qUŒx��1

�
h
�
x � Œx��

� q�UŒx� � pUŒx��1 C qUŒx��2
�
h
�
x � Œx� � 1

�

D 0;

which ends the proof. ut
Remark 1. It should be remarked that the functional equation (14.14) is a particu-

lar case of the linear equation
nX

iD0
pif

�
gi .x/

�D 0 with g.x/D x � 1 and n D 2.

Moreover, a substantial part of the proof of Theorem 14.7 can be derived from the-
orems presented in the books [227, 229]. However, the theorems in [227, 229] deal
with solutions of the linear equation under some regularity conditions, for example,
the continuity, convexity, differentiability, analyticity, and so on, while Theorem
14.7 deals with the general solution of (14.14) without regularity conditions. In-
deed, the proof of Theorem 14.7 is simple and straightforward.
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We now denote by a and b the distinct roots of the equation x2 � px C q D 0

satisfying jaj > 1 and 0 < jbj < 1.
S.-M. Jung [185] proved the Hyers–Ulam stability of the generalized Fibonacci

functional equation (14.14) and J. Brzdȩk and S.-M. Jung have proved a more gen-
eral theorem (ref. [44]).

Theorem 14.8 (Jung). Let
�
E; k � k� be either a real Banach space if p2 � 4q > 0

or a complex Banach space if p2 � 4q < 0. If a function f W R ! E satisfies the
inequality

kf .x/ � pf .x � 1/C qf .x � 2/k � ı (14.17)

for all x 2 R and for some ı � 0, then there exists a unique solution function
F W R ! E of the generalized Fibonacci functional equation (14.14) such that

kf .x/ � F.x/k � jaj � jbj
ja � bj

ı
�jaj � 1

��
1 � jbj� (14.18)

for all x 2 R.

Proof. Analogously to the first equation of .a/ in the proof of Theorem 14.7, it
follows from (14.17) that

��f .x/ � af .x � 1/� b
�
f .x � 1/� af .x � 2/

��� � ı

for each x 2 R. If we replace x with x � k in the last inequality, then we have

�
�f .x � k/� af .x � k � 1/� b

�
f .x � k � 1/� af .x � k � 2/��� � ı

and further

��bk
�
f .x � k/� af .x � k � 1/�

� bkC1�f .x � k � 1/� af .x � k � 2/��� � jbjkı (a)

for all x 2 R and k 2 Z. By .a/, we obviously have

�
�f .x/ � af .x � 1/� bn�f .x � n/ � af .x � n � 1/���

�
n�1X

kD0

�
�bk

�
f .x � k/ � af .x � k � 1/�

� bkC1�f .x � k � 1/� af .x � k � 2/
���

�
n�1X

kD0
jbjkı (b)

for every x 2 R and n 2 N .
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For any x 2 R, .a/ implies that the sequence fbn.f .x � n/ � af .x � n � 1//g
is a Cauchy sequence. (Note that 0 < jbj < 1.) Therefore, we can define a function
F1 W R ! E by

F1.x/ D lim
n!1 bn

�
f .x � n/ � af .x � n � 1/�;

since E is complete. In view of the definition of F1, we obtain

pF1.x � 1/� qF1.x � 2/

D .p=b/ lim
n!1b

nC1�f .x � .nC 1//� af .x � .nC 1/� 1/
�

� .q=b2/ lim
n!1 bnC2�f .x � .nC 2//� af .x � .nC 2/� 1/

�

D .p=b/F1.x/ � .q=b2/F1.x/

D F1.x/ (c)

for all x 2 R, since b2 D pb � q. If n goes to infinity, then .b/ yields

kf .x/ � af .x � 1/� F1.x/k � ı

1 � jbj .d/

for every x 2 R.
On the other hand, it also follows from (14.17) that

�
�f .x/ � bf .x � 1/� a�f .x � 1/� bf .x � 2/

��� � ı:

Analogously to .a/, replacing x with xCk in the above inequality and then dividing
by jajk both sides of the resulting inequality, we have

��a�k�f .x C k/ � bf .x C k � 1/
�

� a�kC1�f .x C k � 1/� bf .x C k � 2/
��� � jaj�kı (e)

for all x 2 R and k 2 Z. By using .e/, we further obtain

�
�a�n�f .x C n/ � bf .x C n � 1/

�� �
f .x/ � bf .x � 1/

���

�
nX

kD1

��a�k�f .x C k/ � bf .x C k � 1/�

� a�kC1�f .x C k � 1/� bf .x C k � 2/
���

�
nX

kD1
jaj�kı ( f )

for x 2 R and n 2 N .
On account of .e/, we see that the sequence fa�n.f .xCn/�bf .xCn�1//g is

a Cauchy sequence for any fixed x 2 R. (Note that jaj > 1.) Hence, we can define
a function F2 W R ! E by
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F2.x/ D lim
n!1a�n�f .x C n/ � bf .x C n� 1/

�
:

Using the definition of F2 yields

pF2.x � 1/� qF2.x � 2/
D .p=a/ lim

n!1a�.n�1/�f .x C n� 1/� bf .x C .n � 1/� 1/�

� .q=a2/ lim
n!1 a�.n�2/�f .x C n � 2/� bf .x C .n � 2/� 1/

�

D .p=a/F2.x/ � .q=a2/F2.x/

D F2.x/ (g)

for any x 2 R. If we let n go to infinity, then it follows from .f / that

kF2.x/ � f .x/C bf .x � 1/k � ı

jaj � 1
.h/

for each x 2 R.
By .d/ and .h/, we have

�
��
�f .x/ �

	
b

b � a
F1.x/ � a

b � aF2.x/

���
�

D 1

jb � aj
�
�.b � a/f .x/ � �

bF1.x/ � aF2.x/
���

� 1

ja � bjkbf .x/ � abf .x � 1/� bF1.x/k

C 1

ja � bjkaF2.x/ � af .x/C abf .x � 1/k

� jaj � jbj
ja � bj

ı
�jaj � 1

��
1 � jbj�

.i/

for all x 2 R. We now define a function F W R ! E by

F.x/ D b

b � aF1.x/ � a

b � a
F2.x/

for all x 2 R. Then, it follows from .c/ and .g/ that

pF.x � 1/� qF.x � 2/

D pb

b � a
F1.x � 1/� pa

b � a
F2.x � 1/� qb

b � a
F1.x � 2/C qa

b � aF2.x � 2/

D b

b � a

�
pF1.x � 1/� qF1.x � 2/

�� a

b � a

�
pF2.x � 1/� qF2.x � 2/�

D b

b � a
F1.x/� a

b � aF2.x/
D F.x/

for each x 2 R, i.e., F is a solution of (14.14). Moreover, by .i/, we obtain the
inequality (14.18).
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Now, it only remains to prove the uniqueness of F . Assume that F;F 0 W R ! E

are solutions of (14.14) and that there exist positive constants C1 and C2 with

kf .x/ � F.x/k � C1 and kf .x/ � F 0.x/k � C2 .j /

for all x 2 R. According to Theorem 14.7, there exist functions h; h0 W Œ�1; 1/ ! E

such that
F.x/ D UŒx�C1h

�
x � Œx�

� � qUŒx�h
�
x � Œx� � 1

�
;

F 0.x/ D UŒx�C1h0�x � Œx�
� � qUŒx�h

0�x � Œx� � 1�
(k)

for any x 2 R, since F and F 0 are solutions of (14.14).
Fix a t with 0 � t < 1. It then follows from .j / and .k/ that

�
�UnC1

�
h.t/ � h0.t/

�C Un
�
qh0.t � 1/� qh.t � 1/

���

D �
��UnC1h.t/ � qUnh.t � 1/

�� �
UnC1h0.t/ � qUnh0.t � 1/

���

D kF.nC t/ � F 0.nC t/k
� kF.nC t/ � f .nC t/k C kf .nC t/ � F 0.nC t/k
� C1 C C2

for each n 2 Z, i.e.,

�
�
�
�
anC1 � bnC1

a � b
�
h.t/ � h0.t/

�C an � bn
a � b

�
qh0.t � 1/� qh.t � 1/�

�
�
�
�

� C1 C C2

.l/

for every n 2 Z. Dividing both sides by jajn yields

�
�
�
�
a � .b=a/nb

a � b
�
h.t/ � h0.t/

�C 1 � .b=a/n

a � b

�
qh0.t � 1/� qh.t � 1/

�
�
�
�
�

� .C1 C C2/jaj�n

and letting n ! 1, we obtain

a
�
h.t/ � h0.t/

�C q
�
h0.t � 1/� h.t � 1/� D 0: .m/

Analogously, if we divide both sides of .l/ by jbjn and let n ! �1, then we get

b
�
h.t/ � h0.t/

�C q
�
h0.t � 1/� h.t � 1/

� D 0: .n/

By .m/ and .n/, we have

	
a q

b q


	
h.t/ � h0.t/

h0.t � 1/� h.t � 1/



D
	
0

0



:
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Since aq � bq ¤ 0 (where both a and b are nonzero and so q D ab ¤ 0), it should
hold true that

h.t/ � h0.t/ D h0.t � 1/� h.t � 1/ D 0

for any t 2 Œ0; 1/, i.e., h.t/ D h0.t/ for all t 2 Œ�1; 1/. Therefore, we conclude
that F.x/ D F 0.x/ for any x 2 R. (The presented proof of uniqueness of F is
somewhat long and involved. Indeed, the uniqueness can be obtained directly from
[48, Proposition 1].) ut
Remark 2. The functional equation (14.14) is a particular case of the linear equa-
tions of higher orders and the Hyers–Ulam stability of the linear equations has been
proved in [48, Theorem 2]. Indeed, J. Brzdȩk, D. Popa, and B. Xu have proved an
interesting theorem, from which the following corollary follows (see also [46,353]):

Let a function f W R ! E satisfy the inequality (14.17) for all x 2 R and for
some ı � 0 and let a; b be the distinct roots of the equation x2 � px C q D 0.
If jaj > 1, 0 < jbj < 1; and jbj ¤ 1=2, then there exists a solution function
F W R ! E of (14.14) such that

kf .x/ � F.x/k � 4ı
ˇ
ˇ2jaj � 1

ˇ
ˇ
ˇ
ˇ2jbj � 1

ˇ
ˇ (14.19)

for all x 2 R.

If either 0 < jbj < 1=2 and jaj > 3=2 � jbj or 1=2 < jbj < 3=4 and jaj >�
5 � 6jbj�=�6 � 8jbj�, then

4ı
ˇ
ˇ2jaj � 1ˇˇˇˇ2jbj � 1ˇˇ >

ı
�jaj � 1

��
1 � jbj� � jaj � jbj

ja � bj
ı

�jaj � 1��1 � jbj� :

Hence, the estimation (14.18) of Theorem 14.8 is better in these cases than the
estimation (14.19).

Remark 3. As we know, fUn.1;�1/gnD1;2;::: is the Fibonacci sequence. So if we set
p D 1 and q D �1 in Theorems 14.7 and 14.8, then we obtain the same results as
in [184, Theorems 2.1, 3.1, and 3.3].
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46. J. Brzdȩk, D. Popa and B. Xu, Note on nonstability of the linear recurrence, Abh. Math. Sem.
Univ. Hamburg 76 (2006), 183–189.



Bibliography 347
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52. J. Brzdȩk and J. Tabor, Stability of the Cauchy congruence on restricted domain, Arch. Math.
(Basel) 82 (2004), 546–550.

53. S. Butler, Problem no. 11030, Amer. Math. Monthly 110 (2003), 637–637.
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Birkhäuser, Basel, 1987, pp. 277–280.

103. J. W. Fickett, Approximate isometries on bounded sets with an application to measure theory,
Studia Math. 72 (1981), 37–46.

104. G. L. Forti, An existence and stability theorem for a class of functional equations, Stochastica
4 (1980), 23–30.

105. G. L. Forti, The stability of homomorphisms and amenability, with applications to functional
equations, Abh. Math. Sem. Univ. Hamburg 57 (1987), 215–226.

106. G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes
Math. 50 (1995), 143–190.

107. G. L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of
functional equations, J. Math. Anal. Appl. 295 (2004), no. 1, 127–133.

108. G. L. Forti, Elementary remarks on Ulam-Hyers stability of linear functional equations,
J. Math. Anal. Appl. 328 (2007), no. 1, 109–118.

109. W. Förg-Rob and J. Schwaiger, On the stability of a system of functional equations charac-
terizing generalized hyperbolic and trigonometric functions, Aequationes Math. 45 (1993),
285–296.

110. W. Förg-Rob and J. Schwaiger, On the stability of some functional equations for general-
ized hyperbolic functions and for the generalized cosine equation, Results Math. 26 (1994),
274–280.

111. Z. Gajda, On stability of the Cauchy equation on semigroups, Aequationes Math. 36 (1988),
76–79.

112. Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), 431–434.
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134. M. Hosszú, On the functional equation F.x C y; z/ C F.x; y/ D F.x; y C z/ C F.y; z/,

Period. Math. Hungar. 1 (1971), 213–216.
135. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27

(1941), 222–224.
136. D. H. Hyers, G. Isac and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability

of mappings, Proc. Amer. Math. Soc. 126 (1998), 425–430.
137. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Vari-
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Căprău, C., 50
Cauchy difference, 2, 24
Cauchy sequence, 22
Cauchy, A. L., 19
Chang, I.-S., 198

359



360 Index

character, 12
characteristic value, 55
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Lobačevskiĭ’s functional equation, 10, 168
local base, 73
locally compact, 235
locally convex, 73
logarithmic function, 253
logarithmic functional equation, 13, 253
Losonczi, L., 5, 7, 62, 109
Lucas sequence of the first kind, 337

M
Maksa, G., 17, 327
measure of noncompactness, 51
method of invariant means, 5, 71
Min, S., 86
Mininni, M., 55
mixed stability, 211
multiplicative derivation, 17, 327
multiplicative functional equation, 12, 227
multiplicatively inverse, 124
multiplicatively symmetric operator, 228

N
Najdecki, A., 228
normal, 51
numerical range, 232

O
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